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PREFACE.

.During my connection with the University of

Michigan as Professor of Astronomy I felt very much

the want of a book written in the English language,

to which I might refer the students attending my lec

tures, and it seems that the same want was felt by
other Professors, as I heard very frequently the wish

expressed, that I should publish an English Edition of

my Spherical Astronomy, and thus relieve this want

at least for one important branch of Astronomy. How
ever while I was in America I never found leisure to

undertake this translation, although the arrangements
for it were made with the Publishers already at the time

of the publication of the Second German Edition. In

the mean time an excellent translation of a part of the

book was published in England by the Rev. R. Main; but

still it seemed to me desirable to have the entire work

translated, especially as the Second Edition had been

considerably enlarged. Therefore when I returned to

Germany and was invited by the Publishers to pre

pare an English translation, I gladly availed myself of

my leisure here to comply with their wishes, and hav

ing acted for a number of years as an instructor of
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science in America, it was especially gratifying to me

at the close of my career there to write a work in

the language of the country, which would leave me

in an intellectual connection with it and with those

young men whom I had the pleasure of instructing in

my science.

Still I publish this translation with diffidence, as

I am well aware of its imperfection, and as I fear that,

not to speak of the want of that finish of style which

might have been expected from an English Translator,

there will be found now and then some Germanisms,

which are always liable to occur in a translation, espe

cially when made by a German. I have discovered

some such mistakes myself and have given them in

the Table of Errors.

I trust therefore that this translation may be re

ceived with indulgence and may be found a useful

guide for those who wish to study this particular

branch of science.

JENA, August 1864.

F. BRtTNNOW.
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INTRODUCTION.

,1. TRANSFORMATION OF CO-ORDINATES. FORMULAE OF

SPHERICAL TRIGONOMETRY.

1. In Spherical Astronomy we treat of the positions

of the heavenly bodies on the visible sphere of the heavens,

referring them by spherical co-ordinates to certain great cir

cles of the sphere and establishing the relations between the

co-ordinates with respect to various great circles. Instead of

using spherical co-ordinates we can give the positions of the

heavenly bodies also by polar co-ordinates, viz. by the angles,

which straight lines drawn from the bodies to the centre of

the celestial sphere make with certain planes, and by the

distance from this centre itself, which, being the radius of

the celestial sphere, is always taken equal to unity. These

polar co-ordinates can finally be expressed by rectangular
co-ordinates. Hence the whole of Spherical Astronomy can

be reduced to the transformation of rectangular co-ordinates,

for which we shall now find the general formulae.

If we imagine in a plane two axes perpendicular to each

other and denote the abscissa and ordinate of a point by x
and

?/,
the distance of the point from the origin of the co-or

dinates by r, the angle, which this line makes with the po
sitive side of the axis of a?, by t?, we have:

r cos v

r sin v.

If we further imagine two other axes in the same plane,
which have the same origin as the former two and denote

the co-ordinates of the same point referred to this new sys-
1



tern by x and y and the angle corresponding to by ,

we have:

If we denote then the angle, which the positive side of

the axis of x makes with the positive side of the axis of a?,

by o, reckoning all angles in the same direction from to

360, we have in general v = v -\- w, hence :

x= r cos v cos w r sin v sin w

y= r sin v
1

cos w -\- r cos v
1

sin w,

or:
x-= x cos w y sin w

y = x sin w -J- y cos w

and likewise:

x = x cos w -+- y sin w
(1)

y= re sin w -f- y cos w

These formulae are true for all positive and negative values

of x and y and for all values of w from to 360.

2. Let a;, ?/,
z be the co - ordinates of a point referred

to three axes perpendicular to each other, let a be the angle,

which the radius vector makes with its projection on the plane

of xy, B the angle between this projection and the axis of a?

(or the angle between a plane passing through the point

and the positive axis of z and a plane passing through the

positive, axes of x and a, reckoned from the positive side of

the axis of x towards the positive side of the axis of y from

0&quot; to 360), then we have, taking the distance of the point

from the origin of the co-ordinates equal to unity:

x= cos B cos
, y = sin B cos a

,
2= sin a .

But if we denote by a the angle between the radius

vector and the positive side of the axis of a, reckoning it

from the positive side of the axis of z towards the positive

side of the axis of x and y from to 360, we have:

x= sin a cos B\ y= sin a sin B\ z= cos a.

If now we imagine another system of co-ordinates, whose

axis of y coincides with the axis of ?/, and whose axes of

x and a make with the axis of x and z the angle c and if

we denote the angle between the radius vector and the posi

tive side of the axis of a
1

by b and by A the angle between

the plane passing through and the positive axis of z and the



plane passing through the positive axes of x and
, reckoning

both angles in the same direction as a and B\ we have:

x = sin b cos A\ y = sin b sin A
,

2 = cos 6,

and as we have according to the formulae for the transfor

mation of co-ordinates:

z = x sin c -+- z cos c

r=*y
#= a- cos c z sin c,

we find:

cos a = sin b sin c cos J. H- cos 6 cos c

sin a sin .5 = sin 6 sin A
sin a cosB = sin 6 cos c cos A cos b sin c.

3. If we imagine a sphere, whose centre is the origin
of the co-ordinates and whose radius is equal to unity and

draw through the point and the points of intersection of

the axes of z and * with the surface of this sphere arcs of

a, great circle, these arcs form a spherical triangle, if we use

this term in its most general sense, when its sides as well as

ingles may be greater than 180 degrees. The three sides

Z, Z and Z Z of this spherical triangle are respectively

a, b and c. The spherical angle A at Z is equal to A, being
the angle between the plane passing through the centre and

the points and Z and the plane passing through the centre

and the points Z and Z
,
while the angle B at Z is generally

equal to 180 B . Introducing therefore A and B instead

af A 1 and B in the equations which we have found in No. 2,

we get the following formulae, which are true for every spher
ical triangle:

cos a= cos b cos c -+- sin b sin c cos A
sin a sinB= sin b sin A
sin a cosB= cos b sin c sin 6 cos c cos ^4.

These are the three principal formulae of spherical tri

gonometry and express but a simple transformation of co-or
dinates.

As we may consider each vertex of the spherical triangle
as the projection of the point on the surface of the sphere
and the two others as the points of intersection of the two
axes z and z with this surface, it follows, that the above

formulae are true also for any other side and the adjacent
1*
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angle, if we change the other sides and angles correspond

ingly. Hence we obtain, embracing all possible cases:

cos a = cos b cos c H- sin b sin c cos A

cos I,
= cos a cos c -f- sin a sin c cos B (2)

COs c = cos a cos 6 -+- sin a sin 6 cos C

sin a sin B = sin 6 sin A
sin a sin C= sin c sin vl (3)

sin b sin (7= sin c sin 5
sin a cos B= cos ft sin c sin 6 cos c cos A

sin a cos C= cos c sin b sin c cos b cos -4

sin b cos J.= cos a sin c sin a cos c cos B

sin 6 cos C= cos c sin a sin c cos a cos jB

sin c cos A = cos a sin 6 sin a cos b cos C

sin c cos B = cos 6 sin a sin 6 cos a cos C.

4. We can easily deduce from these formulae all the

other formulae of spherical trigonometry. Dividing the for

mulae (4) by the corresponding formulae (3), we find:

sin A cotang B = cotang b sin c cos c cos A
sin A cotang C = cotang c sin b cos b cos A
sin B cotang A= cotang a sin c cos c cos B

sin B cotang C = cotang c sin a cos a cos B
sin C cotang A = cotang a sin b cos b cos C

sin C cotang B = cotang b sin a cos a cos C.

If we write the last of these formulae thus:

cos b sin a sinB
sin C cos J3 = cos a sin 25 cos C,

sm o

we find:

sin C cos .B= cos 6 sin .A cos a sin .B cos C,

or:

sin J. cos b = cos 5 sin C -+ sin jB cos C cos a

an equation, which corresponds to the first of the formulae (4),

but contains angles instead of sides and vice versa. By chang

ing the letters, we find the following six equations:

sin A cos 6 = cos^B sin (7-4- sin B cos C cos a

sin A cos c = cos C sinB -+- sin C cos B cos a

sin5 cos a= cos A sin C H- sin A. cos C cos 6

sin B cos c = cos C sin ^4 -f- sin C cos J. cos 6

sin C cos a= cos A sin jB -f- sin A cos J3 cos c

sin (7 cos 6 = cos B sin A -{- smB cos J. cos c

and dividing these equations by the corresponding equations

(3), we have:



sin a cotang b= cotang .5 sin C -\- cos C cos a

sin a cotang c = cotang C sinB -f- cos jB cos a

sin 6 cotang a= cotang A sin 6Y

-+- cos C cos 6

sin b cotang c = cotang C sin J. -f- cos A cos ft

sin c cotang a = cotang A sinB -\- cos .6 cos c

sin c cotang b = cotangB sin A -f- cos ^4 cos c.

From the equations (6) we easily deduce the following:

cos A sin C= sin .5 cos a sin A cos 6y

cos 6

cosB sin C= sin A cos 6 sin B cos (7 cos a.

Multiplying these equations by sin C and substituting

the value of sin A sin C cos b taken from the second equa
tion into the first, we find:

cos A = sin B sin C cos a cos B cos C

and changing the letters we get the following three equations,

which correspond to the formulae (2), but again contain angles
instead of sides and vice versa:

cos A= sin B sin C cos a cos B cos C
cosB = sin A sin C cos b cos A cos C (8)

cos C= sin A sinB cos c cos A cos .5.

5. If we add the two first of the formulae (3), we find :

sin a [sin B -+- sin C] = sin A [sin b -f- sin c] ,

or:

B C
. B+C . 6-4-c 6 c

sm-j^cos ~ .cos^asm --- = sin
-5-
-4 sin . cos ^-^4 cos

and if we subtract the same equations, we get:
B C B+C b+ c

.
b c

8in4 a sin -
. cos

.,
a cos

-^
=sm^ylcos . cos 4 sin -~ -

-

Likewise we find by adding and subtracting the two

first of the formulae (4):

BC E-\-C
. . sm.4cos -

2 2i 2

.
BC

.
B+ C

. b c b c
sm a sin --- -

. cos a sin
^
= cos TM sm cos f A cos

^

Each of these formulae is the product of two of Gauss s

equations; but in order to derive from these formulae Gauss s

equations, we must find another formula, in which a different

combination of equations occurs. We may use for this pur

pose either of the following equations:

B-\-C . B+C b-i-c b c
cos T a cos ^

--
-.cos^asm -- - =sin^cos .cos^^lcos nZ Z 2 Z

.
,

BC
. . B C 6-f-c b c

sm^acos------
.sm-^-asin =smy^sin .cos 7^4 sin- j

* 2
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which we find by adding or subtracting the first two of the

equations (6).

If we take now :

. 6-hc
sin A sm 5 = a

sin? J-cos
&amp;lt;r

p

.
b c

cos j A sin -~ = y

COS -5
.4 COS ~

and:
tf

sm , a cos ~ = a

,

cos a cos - =
/a

. BC ,

sin a sm = y

a y =ay,

.

-
,,

cos a sm - = o
,

we find the following six equations:

a 8 = a 8, y p =yp, a
{3 =a{3, y 8 = y8t

from which we deduce the following:
=

a, /9
=

/?, /= y, 3 =
,

or:
=

,
= -

|g, /= 7 ,
8 = 8.

Hence we find the following relations between the angles

and sides of a spherical triangle:

. b+c BC
sm -5

A sm = sm a cos -

b+ c B-+-C
sm -j^. cos ^r

= cos .y cos g

(9)

, , -
6~ c

i
BC

cos
-5-
-A sin = = sm 7 a sm

^

6 c
.

cos J. cos ^
= cos

ijr
a sm

-

or:

. 6+c
sm ^ ^1 sm - = sm 4- a cos

2i

6-hc
sm 4-A cos = cos a cos

.
6 c

cos
TJ

-4 sm r sin 7 a sm

6 c
cos 5 vl cos

&amp;lt;

= cos j a sn -----



Both systems give us for the unknown quantities, which

may be either two sides and the included angle or two angles

and the interjacent side, the same value or at least values

differing by 360 degrees. If we wish to find for instance

A, b and c, we should get from the second system of for

mulae either for ----- and -^ the same values as from the

first, but for \A a value which differs 180, or we should

find for
c
and ~ values which differ 180 from those

derived from the first system ,
but for A the same value.

In each case therefore the values of 4, b and c as found

from the two systems would differ only by 360. The four

formulae (9) are therefore generally true and it is indifferent,

whether we use for the computation of A, b and c the quan
tities a, B, C themselves or add to or subtract from any of

them 360*).
The four equations (9) are known as Gauss s equations&quot;

and are used, if either one side and the two adjacent angles
of a spherical triangle or two sides and the included angle
are given and it is required to find the other parts. The best

way of computing them is the following. If a, B and C are

the given parts, we find first the logarithms of the following

quantities :

BC
(1) cos -

(4)

(2) sin ^ a (5) cos I a

(3)

and from these:

,,, .
BC . B+C

(3) sm 5^ (6) sin

(7) sin ^ a cos (9) sin ^ a sin
2i 2

(8) cos | a cos -
(10) cos \ a sin

Subtracting the logarithm of (8) from that of (7) and

the logarithm of (10) from that of (9), we find log. tang

(b -|- c) arid Ig. tg. j[ (6 c), from which we get b and c. Then
we take either log cos (6 -+- c) or log sin i

(6 -+- c) and log
cos ^ (6 c) or log sin (6 c), whichever is the greater one

*) Gauss, Theoria motus corporum coelestium pag. 50 seq.
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of the two and subtract the first from the greater one of the

logarithms (7) or (8), the other from the greater one of the

logarithms (9) or (10) and thus find log sin { A and log

cos |
A. Subtracting the latter from the first, we get log

tang \ A ,
from which we find A. As sin \ A as well as

cos | A must necessarily give the same angle as tang \ A,

we may use this as a check for our computation.

If for instance we have the following parts given:

a= 11 25 56.&quot;3

.
= 184 6 55. 4

C= 11 18 40. 3

we have:

(7)
= 86 24 7.&quot;55

cos 4 (B C) = 8.7976413

sin ^ a = 8.9982605

sin \ (B (7)
= 9.9991432

sin \ a cos \ (B C) 7.7959018

cos 4 a cos | (B -f- C) 9.1256397.

i(6-f-c)~ 177 19 13.49^

cos 4- (b -h c)_ 9.9995248

sinM 9.1261149

cos ^ A 9.9960835

4 JTTMO7
59.&quot;38~

97 42 47.&quot;85

) 9.1278046

cos i a 9.9978351

S in ^(B -+- (7) 9.9960526

sin 4 sin ^ ( &amp;lt;7)
8.9974037

cos \ a sin ^(B + (7) 9.9938877

|(6 c) 5 45 24. 13

cos^(6 c) 9.9978042

6 = 183 4 37.&quot;62

c = 171 33 49. 36

A= 15 21 58. 76.

If we had taken B = 175 53 4.%, hence:

^ ( + C )
= 82 17 12.&quot;15

^ (5 C) = 93 35 52. 45

we should have found:

^ (6 _l_c) == _ 240 46.&quot;51

7| (i c)= 185 45 24. 13

hence 6 = 183 4 37.&quot;62 and c= 188 26
;

10.&quot;64.

Dividing Gauss s equations by each other, we find Napier s

equations. Writing A, B, C in place of 5, C, A and
er, 6, c

in place of 6, c, a, we find from the equations (9):

A-i-B
tang

--

tang
-

a b
C S

~~

(9 a)

2 C-
cotang



A B
+b -&amp;gt;r-
2
~

cos

A B
sin ^

a b 2 c

6. As nearly all the formulae in No. 3 and 4 are under

a form not convenient for logarithmic computation, their second

members consisting of two terms, we must convert them by

the introduction of auxiliary angles into others, which are

free from this inconvenience. Now as any two real, positive

or negative quantities x and y may be taken proportional to

a sine or cosine of an angle we may assume:

x= m sin M and y = in cos M
for we find immediately:

tang If= and m = V x&quot;

1 + y* ,

hence M and m expressed by real quantities. Therefore as

all the above formulas, which consist of several terms, con

tain in each of these terms the sine and cosine of the same

angle, we can take their factors proportional to the sine and

cosine of an angle and, applying the formulae for the sine

or cosine of a binomial, we can convert the formulae into

a form convenient for logarithmic computation.
For instance, if we have to compute the three formulae:

cos a= cos b cos c -f- sin b sin c cos A
sin a sin B = sin 6 sin A
sin a cos B= cos 6 sin c sin b cos c cos A,

we may put:
sin b cos A= m sin M

cos b = m cos M.

and find:

cos a = m cos (c M)
sin a sinB= sin b sin A
sin a cos B = m sin (c M}.

If we know the quadrant, in which B is situated, we
can also write the formulae in the following manner, sub

stituting for m its value
S1

: --. We compute first:
sin M

tang M=- tang b cos A
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and then find:

tang A sin M
tang= --

sm(c M}
tang(c M)

tang a=
cos ^

If we have logarithmic tables, by which we can find

immediately the logarithms of the sum or the difference of

two numbers from the logarithms of the numbers themselves,

it is easier and at the same time more accurate, to use the

three equations in their original form without introducing the

auxiliary angle. Such tables have been computed for seven

decimals by Zech in Tubingen. (J. Zech, Tafeln fur die Ad
ditions- und Subtractions -Logarithmen fur sieben Stellen.)

Kohler s edition of Lalande s logarithmic tables contains

similar tables for five decimals.

7. It is always best, to find angles by their tangents;

for as their variation is more rapid than that of the sines

or cosines, we can find the angles more accurately than by
the other functions.

If /\x denotes a small increment of an angle, we have:

Now it is customary to express the increments of angles

in seconds of arc
;
but as the unit of the tangent is the ra

dius, we must express the increment A & als m parts of the

radius, hence we must divide it by the number 206264,8*).

Moreover the logarithms used in the formula are hyperbolic

logarithms; therefore if we wish to introduce common loga

rithms, we must multiply by the modulus 0.4342945 = M.

Finally if we wish to find A (log tang x) expressed in units

*) The number 206264.8, whose logarithm is 5.3144251, is always used

in order to convert quantities, which are expressed in parts of the radius?

into seconds of arc and conversely. The number of seconds in the whole

circumference is 129(5000, while this circumference if we take the radius as

unit is 27r or 6.2831853. These numbers are in the ratio of 206264,8 to 1.

Hence, if we wish to convert quantities, expressed in parts of the radius into

seconds of arc, we must multiply them by this number; but if we wish to

convert quantities, which are expressed in seconds of are, into parts of the

the radius, we must divide them by this number, which is also equal to the

number of seconds contained in an arc equal to the radius, while its com

plement is equal to the sine or the tangent of one second.
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of the last decimal of the logarithms used, we must multiply

by 10000000 if we employ logarithms of seven decimals. We
find therefore:

2 M /\x&quot;

A (log tang x} = -r
- JL , Q 10000000

or:

sin 2,

A (log tang r).

This equation shows, with what accuracy we may find

an angle by its tangent.

Using logarithms of five decimals we may expect our

computation to be exact within two units of the last decimal.

Hence in this case A (log tang a?) being equal to 200, the

error of the angle would be:

900&quot;

A*&quot;
=

11 V sin2 *= 5
&quot;

sin2 *
4:2,1

Therefore if we use logarithms of five decimals, the error

cannot be greater than 5&quot; sin 2x or as the maximum value

of sin 2 x is unity, not greater than 5 seconds and an error

of that magnitude can occur only if the angle is near 45.
If we use logarithms of seven decimals, the error must needs

be a hundred times less
;
hence in that case the greatest er

ror of an angle found by the tangent will be O.&quot;05.

If we find an angle by the sine or cosine, we should

have in the formula for A (log sin x) or A (log cos x) instead

of sin 2 x the factor tang x or cotang x which may have any
value up to infinity. Hence as small errors in the logarithm
of the sine or cosine of an angle may produce very great
errors in the angle itself, it is always preferable, to find

the angles by their tangents.

8. Taking one of the angles in the formulae for oblique

triangles equal to 90, we find the formulae for right-angled

triangles. If we denote then the hypothenuse by /, the two
sides by c and c and the two opposite angles by C and

C&quot;,

we get from the first of the formulae (2), taking A = 90 :

cos h= cos c cos c
,

and by the same supposition from the first of the formulae (3) :

sin h sin C= sin c
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and from the first of the formulae (4) :

sin h cos C= cos c sin c

or dividing this by cos h :

tang h cos C= tang c.

Dividing the same formula by sin h sin C, we find :

cotang C= cotang c sin c
,

or:

tang c = tang C sin c .

Combining with this the following formula:

tang c = tang C sin c,

we obtain
cos h = cotg Ccotg C .

At last from the combination of the two equations:

sin h sin C
;= sin c

and sin h cos (7 = cos c sin c
,

we find:

cos = sin C cos c.

We have therefore for a right-angled triangle the follow

ing six formulae, which embrace all combinations of the five

parts :

cos h = cos c cos c

sin c= sin h sin C

tang = tang h cos C&quot;

tang c = tang C sin c

cos h = cotang C cotang C
cos (7= cos r; sin

C&quot;,

and these formulae enable us to find all parts of a right-

angled triangle if two of them are given.

Comparing these formulas with those in No. 6, we easily

see, that by the introduction of the auxiliary quantities m
and M, we substitute two right-angled triangles for the oblique

triangle. For if we let fall an arc of a great circle from the

vertex C of the oblique triangle vertical to the side c, it is

plain, that m is the cosine of this arc and M the part of the

side c between the vertex A and the point, where it is in

tersected by the vertical arc.

9. For the numerical computation of any quantities in

astronomy we must always take certain data from obser

vations. But as we are not sure of the absolute accuracy
of any of these, on the contrary as we must suppose all of

them to be somewhat erroneous, it is necessary in solving a

problem to investigate, whether a small error of the observed
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quantity may not produce a large error of the quantity which

is to be found. Now in order to be able easily to make such

an estimate, we must differentiate the formulae of spherical

trigonometry and in order to embrace all cases we will take

all quantities as variable.

Differentiating thus the first of the equations (2), we get:

sin a da = db
[

sin b cos c -+- cos b sin c cos A]

-+- dc
[

cos b sin c -h sin b cos c cos A]

sin b sin c sin A.dA.

Here the factor of db is equal to -- sin a cos C and

the factor of dc equal to - sin a cos E\ if we write also

- sin a sin c sin B instead of the factor of A
,
we find the

differential -formula :

da= cos Cdb -J~ cos 13 dc -+- sin c sin BdA..

Writing the first of the equations (3) in a logarithmic

form, we find:

log sin a -+- log sin B = log sin b -j~ log sin A

and by differentiating it:

cotang a da -+- cotang Bd.B= cotang bdb -\- cotang AdA.

Instead of the first of the formulae (4), we will dif

ferentiate the first of the formulae (5), which were found by
the combination of the formulae (3) and (4). Thus we find:

dB -+- dA [cotang B cos A sin A cos c]
sin JD

=
, -,-

db -+- dc [cotang b cos c -+- cos A sin c]sm &a

sin A
,

cos C 7 sin c cos a
or: -- dB -dA= 72 &amp;lt;/6-h-.:--dc.

smB* smB sin b* sin o

Multiplying this equation by sin B, we find:

sin a sin C cos a sin B- d B cos CdA = db -\- dc,sm b sin b sm 6

or finally:

sin adB= sin Cdb sin B cos adc sin b cos CdA.

From the first of the formulae (8) we find by similar

reductions as those used for formula (2):
dA= cos cdB cos bdC -+- sin b sin Cda.

Hence we have the following differential formulae of tri

gonometry :

da= cos Cdb -f- cos Bdc H- sin b sin CdA
cotang a da -+- cotang BdB= cotang bdb -+- cotang A dA

sin adB = sin Cdb sin B cos adc sin b cos CdA
dA= cos cdB cos bdC -}- sin- b sin Cda.
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10. As long as the angles are small, we may take their

cosines equal to unity and their sines or tangents equal to

the arcs themselves, or if we wish to have the arc expressed
in seconds we may take 206265 a instead of sin a or tang a.

If the angles are not so small that we can neglect already

the second term of the sine, we may proceed in the fol

lowing way.
We have:

sin a
i _ J_ a . _i_ 4 _

a 6
a

^120
and:

cos a= 1
y-

a 2
-+- -j-r a 4

hence :

y cos a= 1 a 2
-f-

We have therefore, neglecting only the terms higher than

the third power:

sin a \l= V cos a
a

3

or: i/
a= sin a y sec a

This formula is so accurate that using it for an angle
of 10 we commit only an error less than a second. For we
have :

3

log sin 10 ]/ sec 10 = 9.2418864

and adding to this the logarithm 5.3144251 and finding the

number corresponding to it, we get 36000.&quot;74 or:

10 0.&quot;74.

11. As we make frequent use in spherical astronomy
of the developement of formulae in series, we will deduce

those, which are the most important.
If we have an expression of the following form:

-
,

1 a cos x

we can easily develop y in a series, progressing according

to the sines of the multiples of x. For if we have tangz=,
we find d*= ndm ~ m

t
-. If we take thus in the formula

r-f- 2
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for tang y a and y as variable, we find:

dy sin x- - ;--
da 1 2 a cos x -+- a~

and if we develop this expression by the method of indeter

minate coefficients in a series progressing according to the

powers of
,
we find:

-^= sinx-{-asin2x-i- a 2
sin 3 x -+- ____ *)

da

Integrating this equation and observing that we have

y = when x= 0, we find the following series for y:

y= a sin x -f- ^ a 2
sin 2 x -+- ^ a 3

sin 3 x -+- ____ (12)

Often we have two equations of the following form:

Asin JB= a sin .r

J. cosB = 1 cos #,

and wish to develop B and log A in a series progressing ac

cording to the sines or cosines of the multiples of x. As in

this case we have :

a sin:r

tang B= -
,

1 a cos x

we find for B a series progressing according to the sines of

the multiples of x from the above formula (12). But in order

to develop log A in a similar series, we have :

A = V I 2acosx-i-a 2
.

Now we find the following series by the method of in

determinate coefficients :

a cos x a 2

~ = a cosx -f- a cos 2x -f- a 3 cos ox -f- .. . )
1 2 a cos x -H a 2

Multiplying this by
- - and integrating with respect

to a, we find for the left side:

2acosa:-t-a 2
)

&amp;lt;a

and as we have log ^4 = when a= 0, we get :

log ]/l 2acos#-|-a
2
=log^l= [ocosar+^a

2
cos2ar+ a 3 cos3.r+ . .

.] (13)

*) It is easily seen, that te first term is sin^, and that the coefficient

of a&quot; is found by the equation:

A,, = 2A i cos x An-i

**) It is again evident, that the coefficient of a is cos a:, while the co

efficient of a,, is found by the equation :

A,t
= 2 An \ COS X An %.
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If we have the two equations:
A sin B = a sin x

A cos B= 1 -+- a cos or

we find by substituting 180 x instead ofx in the equations

(12) and (13):
.B= asinar 4 a

2
sin 2*4- j a

3
sin 3* .... (14)

a COS.T
.]
a 2 cos2:r-4- }a

3 cosStf .... (15)

If we have an expression of the following form:

tang y= n tang j?,

we can easily reduce it to the form tang y =J 1 cos x

For we have:

tang y tang x (n 1 ) tang x
x) = =

1-j- tang y tango: l-f-ntang*
2

(n 1) sin x cos x (n 1) sin x cos x

x&quot;

1
-+- n sin x 2 11 n n

2
4-

2
cos2*-f-- -cos2*

n- 1 .

sm 2x
(n 1) sin 2;r

(n4-D (M --- -- cos
n-\- 1

Hence, if we have the equation tang y= n tang a?, we find :

y= x-}- sin 2 x -h 4- (- .) sin4a: -t-4 ( .
)
sin6r + ... (16)

n-hl Vn-f-lx \n-j-l/

If we take here:
n= cos a,

we have: ---= tang 4 a 2
.

n-f-1

Hence from the equation:

tang^= cos a tang x

we get

y= x tang^-
2
sin2o:H-^tang4a

4 sin4ar ] tang \ a
6 sin6a:+ ... (17)

If we have : n = sec
,

we find:
^
= tang $

2
.

Hence from the equation:

tangy= sec tang a: or tang x= cos a tangj/,

we obtain for y :

^== x _|-tang^a
2

sin2^+Jtang-;a
4

sm4a:-hitang^a
6 sinGa:4-... (18)

As we have:

cos a cos 8

ioI-a Tcos ft

dsin sin /9

sin -h sin i
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we find also from the equation :

cos a
tangy=

^
tang or,

x tang 4- ( /?) tang ( 4- /?) sin

and from:

^ = # -h tang ^ ( /?) cotang -^ (a -f- /9) sin 2 x

-+ | tang 4- ( )
2

cotang ^ ( -f- /9)
2
sin 4or+ . . .

By the aid of the two last formulae we can develop

Napier s formulae into a series. For from the equation:
A B

a-b Sm -2- c

2
-=

s

we find:

ab c B A B 2 A 2

~2~
~

~2

--
tangT cotang

2
sin c+ ^ tang

&quot;^~
cotang sin 2 c ....

or:

c a 6 Z? A B 2 A 2

2
=:

~2
~+ tanS

2
cotang

2
sin ( ft

~ 6)H-Ttang
-

cotang -y
sin 2 (a 6)4- ...

and also in the same way from the equation:
A B

a+ft
C S

2
tang-

2
-=

^^tang-
cos

we find the following two series :

c A B A 2 B 2

2&quot;

tangT tang
&quot;2&quot;

Sin + tang
~2~

tang
T&quot;

S

^4 5 ^l
2 B 2

2

~
~^
---

tang
2
tang

2
sin ^a+ ^ + tang

2&quot;

tang T sin 2 (-l- ^)

Quite similar series may be obtained from the two other

equations :

A-B sin
~2~ 180- (7

sin - -

a~b
~2~ 180-C7

cos

It often happens, that we meet with an equation of the fol

lowing form: Cos y= cos x H- 6
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from which we wish to develop y into a series progressing

according to the powers of b. We obtain this by applying

Taylor s theorem to the equation:

y= arc cos [cos x -f- b]

For if we put:
cos x= z and y =/(z -f-

?&amp;gt;),

we get:

or as:

f fz\ = x
d.f= _^.* ... = L
dz d.cosx sin*

d*f_ sin* dx cos x

dz 2 dx d.cosx sin* 3

cos x

d3f_
~

sin x 3 dx
__ [1 -h 3 cotang**]

dz 3 dx d.cosx sin x 3

y= x ^cotang* , -i[lH-3cotang*
2

] -,.... (19)
sin* sin* 2 sin* 3

In the same way we find from the equation:

sin y= sin * -f- b

y= x-\ Ktangs-^-r-H [1 + 3 tang*
2]- 3

+ ...*) (20)
cos * cos * 2 cos * 3

.B. THE THEORY OF INTERPOLATION.

12. We continually use in astronomy tables, in which

the numerical values of a function are given for certain nu

merical values of the variable quantity. But as we often

want to know the value of the function for such values of

the variable quantity as are not given in the tables, we must

have means, by which we may be able to compute from

certain numerical values of a function its value for any other

value of the variable quantity or the argument. This is the

object of interpolation. By it we substitute for a function,

whose analytical expression is either entirely unknown or at

least inconvenient for numerical computation, another, which

*) Encke, einige Reihenentwickelungen aus der spharischen Astronomie.

Schumacher s astronomische Nachrichten No. 562.
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is derived merely from certain numerical values, but which

may be used instead of the former within certain limits.

We can develop any function by Taylor s theorem into

a series, progressing according to the powers of the variable

quantity. The only case, which forms an exception, is that,

in which for a certain numerical value of the variable quan

tity the value of one of the differential coefficients is infinity,

so that the function ceases to be continuous in the neigh
bourhood of this value. The theory of interpolation being
derived from the development of functions into series, which

are progressing according to the integral powers of the va

riable quantity, assumes therefore, that the function is con

tinuous between the limits within which it comes into conside

ration and can be applied only if this condition is fulfilled.

If we call w the interval or the difference of two follow

ing arguments (which we shall consider as constant), we may
denote any argument by a-\-nw, where n is the variable

quantity, and the function corresponding to that argument by
f(a-\-nw}. We will denote further the difference of two

consecutive functions f (a -f- nw] and f(a -f- (n -f- 1) w) by

/&quot;(a-hft-f-i), writing within the parenthesis the arithmetical

mean of the two arguments, to which the difference belongs,
but omitting the factor w*). Thus

/&quot; (a-!- 5) denotes the

difference of f(a -h to) and f(a), f(tf-hf) the difference of

f(a -l-20) and
/&quot;(a-f-w?).

In a similar manner we will denote

the higher differences, indicating their order by the accent.

Thus for instance
f&quot; (a-\-Y) is the difference of the two first

differences f (a-Hf) and /&quot;(+).

The schedule of the arguments and the corresponding
functions with their differences in thus as follows:

Argument Function I. Diff. II. Diff. III. Diff. IV. Diff. V. Diff.

a 3w f(a 3 w)
/ (-

o-|-3;/(a

) This convenient notation was introduced by Encke in his paper on
mechanical quadrature in the Berliner Jahrbuch fiir 1837.

9*
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All differences which have the same quantity as the ar

gument of the function, are placed on the same horizontal

line. In differences of an odd order the argument of the

function consists of a-}- a fraction whose denominator is 2.

13. As we may develop any function by Taylor s theorem

into a series progressing according to the integral powers of

the variable quantity, we can assume:

/(a + nw} = a H- ft . n w -h y . n 2
w&quot;

1
-+- . n 3

iv
3 H- . . .

If the analytical expression of the function f (a) were

known, we might find the coefficients a, ft, 7, 6 etc., as we

have a f(a) /i
= ~r-- etc. We will suppose however,

that the analytical expression is not given, or at least that

we will not make use of it, even if it is known, but that

we know the numerical values of the function f(a-\-nw) for

certain values of the argument a -+- nw. Then substituting

those different values of the variable n successively in the

equation above, we get as many equations as we know values

of the function and we may therefore find the values of the

coefficients
, /:?, ; ,

d etc. from them. It is easily seen, that

we have a f(a) and that pw, /w
2

etc. are linear functions

of differences, which all may be reduced to a certain series

of differences, so that we may assume f(^a-\-nw) to be of

the following form:

where ^, J5, C... are functions of w, which may be determined

by the introduction of certain values of n. But when n is

an integral number, any function f(a -\-nw} is derived from

f(a) and the above differences by merely adding them successi

vely, if we take the higher differences as constant or if we
consider the different values of the function as forming an

arithmetical series of a higher order. If already the first dif

ferences are constant, we have simply f(a-}-nw)
= f(a)+n /&quot;(a-j-J),

if the second differences are constant, we must add to the

above value
f&quot; (a-\-Y) multiplied by the sum of the numbers

from 1 to n 1 or by--
(

y~^; and if only the third diffe

rences are constant, we have to add still
/&quot;&quot;(aH-f) multiplied

by the sum of the numbers 1, l-}-2, 1 -{- 2 -+- 3 etc. to
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1+ 2 -f- . . . -{- 2 or by
&quot; (w 7 ^

(&quot;

~
2)

. We have therefore
1 . J . o

i A n n
(&amp;gt;* 1) n n (n 1) (n 2) i

in general A = n, B = -y-g 1 ^ g
- etc. hence :

f(a -+- w) ==/() 4- n/ (a +*) +^-^/ ( + D

+^^2)/ ( + t)H-..., (0

where the law of progression is obvious *).

This formula is known as Newton s formula for interpo

lation. The coefficient of the difference of the order n is

equal to the coefficient of a?&quot; in the development of (1-f-a?)*.

Example. According to the Berlin Almanac for 1850

we have the following heliocentric longitudes of Mercury for

mean noon:
I. Diff. II. Diff. III. Diff.

Jan. 0303 25 1&quot;. 5

2310 651.5 + 6

038 o
+18 48

H-2 44&quot;4

4317 7 29.5 !
J^ S 21 32 . 4

+ *

f
*

-h 10&quot;. 1

6 324 29 39 9 24 9A 9
2 4 ^ 47D 3/1 zy oy . j

7 ic 07 q
-^ wt&amp;gt; . y

9
_

9
-t .

&amp;lt;

8 332 16 17.2 1 27 26 . 1

10340 30 20.6

If we wish to find now the longitude of Mercury for

Jan. 1 at mean noon, we have :

/(a) = 303 25 1&quot;. 5 and n=
,

further :

/ (a -f- |) = -h 6 41 50&quot;. 0, n= | Product: -h 3 20 55&quot;.

/(a + l)= -h 18 48.0,^^ = -| -221.0
1 . Z

+ = + 244.4
n^=i)2-)=+ s +10.3

*) We can see this easily by the manner in which the successive functions

are formed by the differences. For if we denote these for the sake of bre

vity by / , /&quot;, /
&quot;

etc. we have the following table :

I. Diff. II. Diff. III. Diff.

/()

f( \ I O fl I f J J fH i fill J
J(&)~r-*J H~/ f\ _, o fn , fin J ~T~ J fin

Q fll I fill J &amp;lt; ^/ ~T&quot;J fll . O f&amp;gt;
J

*&amp;gt;j
r- j ,., Q ,,;; o ,r;/; ./ v /;//

/(a) H- 5/ -4- 10/ + 10/&quot;

f +
Yf 1 10^ &quot;

&quot;

&quot;&amp;gt; 4/
&quot;

^&quot;

/(a) 4- 6/ -f- 15/&quot; + 20/&quot; ^ J fi
,, [T I

K-&amp;gt;
/&quot;

-+ 5/&quot;

7

/(a)4-7/-h21/&quot;4-35/&quot;&quot;

&quot;
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Hence we have to add to f(cf)

-1-3 18 43&quot;. 9

and we find the longitude of Mercury for Jan. 1 Oh

300 43 45&quot;. 4.

We may write Newton s formula in the following more

convenient form, by which we gain the advantage of using
more simple fractions as factors:

/(a -f- nto) =/(a) H- n [/ (a+ $ -+-^- [/&quot; (a+ 1) + --~- X

If n is again equal to |, we have - =
|, hence

/IV
(aH-2) = 6&quot;. 3. Adding this to

f&quot; (4-f) and mul-
4

tiplying the sum by
?--=

f, we find -- 1 19&quot;. 0. Ad

ding this again to
f&quot; (a -f- 1) and multiplying the sum by

^~l
-=

i, we get 4 22&quot;. 2 and if we finally add this to

f (a4- 1) and multiply by n=^ we have to add 3 18 43&quot;. 9

to f(d) and thus we find the same value as before, namely
306 43 45&quot;. 4.

14. We can find more convenient formulae of inter

polation, if we transform Newton s formula so, that it con

tains only such differences as are found on the same horizon

tal line and that for instance starting from f(a) we have to

use only the differences /X#4-|), /&quot; GO an(^ f &quot;(.

a ~k~%)- The
two first terms of Newton s formula may therefore be re

tained.

Now we have:

/&quot; (a H- 1) =f ()-+- f&quot; (a -f- 1),

/
&quot;

( -h |)= f&quot; (a H- ) -I-/ (a + 1)

/iv (a+ 2) = f
lv

(a H- 1) 4-/
v

( + f )

=/IV()+2/v
(a + |) -f-/

v
( + 1),

/v (a 4- I) ==/% ( + 3
) +yvi (a + 2 )

=/v
( 4- i) 4-/

VI
(a + 1) +/VI

(a+ 2),

etc.

We obtain thus as coefficient of
f&quot; (a) :

n (n 1)
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as coefficient of f ^a-h^) -

njn 1 ) n (n 1) (n 2)_ (n H- 1)_( w_ _1 )

~T:2 1.2.3 1.2.3~

as coefficient of f
lv

(a):

n(n l)(n 2) n(n 1) (n 2) (n 3)_ (n -+- 1) n (n 1) (n 2)

1.2.3 1.2.3.4 1.2.3.4

at last as coefficient of
v

n( l)(n 2) n(n l)(n 2)(n 3) n(n l)(n 2)(n 3)(n-4)
1.2.3 1.2.3.4 1.2.3.4.5

_ (n-f-2) (nH-1) n (n 1) (n 2)

1 .2.3.4.5

where the law of progression is obvious. Hence we have:

If we introduce instead of the differences, whose argu
ment is a-Hf those whose argument is a f, we find:

/ (a + i) =./&quot; (a
-

|) +/&quot; (a),

Therefore in this case the differences of an odd order

remain the same, but the coefficient of
f&quot;(a)

is:

n (n 1)_ n (n+ 1 )

1.2 1.2

and that of
/&quot;

Iv

(a) :

(n+l)n(n 1) (n -+ l)n (n l)(n 2) (n l)n(n+ l) (n-f-2)

1.2.3 1.2.3.4 1.2.3.4

We find therefore:

f&quot; (a) + 1

(n--2)(n-l)n(n+l)(nH-2)

TTT^IL 4^ ~&quot;i7273 .T.T
&quot;

where again the law of progression is obvious.

Supposing now, that we have to interpolate for a value,

whose argument lies between a and a 0, n will be negative.
But if n shall denote a positive number, we must introduce

n instead of n in the above formula, which therefore is

changed into the following:
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/(a)
- n/(a- i)+ ~^^/ (a)

w
(_ 4) + (n+ln-l) 2)

/lv

(n4-2)(n-4-l)n(n-l)(n-2)
~lT2T374~5~

This formula we use therefore if we interpolate back

wards. Making the same change with the formulae (2) and

(3) as before made with Newton s formula, we find:

f(a 4- nw) =/() + n
[ /&quot; (a -K) H-^ [/&quot; (a) + n

-|~-
X

X
[/&quot; (a 4-|) -h^ [/

IV
(a) -4- ... (2 a)

/(a _ nw) =/() _ n [/ (a
-

)
-
^-

1

[/&quot; (a)
-
?^-

X

X [/
&quot;

(a
- $ -

n

~^ [/
Iv

(a)
- ... (3 a)

If we imagine therefore a horizontal line drawn through
the table of the functions and differences near the place which

the value of the function, which we seek, would occupy and

if we use the first formula, when a-\-nw is nearer to a than

to a-\-w, and the second one, when a nw is nearer to a

than to a
?,
we have to use always those differences, which

are situated next to the horizontal line on both sides. It is

then not at all necessary, to pay any attention to the sign
of the differences, but we have only to correct each diffe

rence so that it comes nearer to the difference on the other

side of the horizontal line. For instance if we apply the

first formula, the argument being between a and a-\~^w^ the

horizontal line would lie
between/&quot;&quot;^) and

/&quot; (a-hl). Then

we have to add to
f&quot; (a):

Therefore if f 00 is (
smaller

) than
f&quot;(a -hi), the cor-

Vgreater/

rected
f&quot; (a) will be

(f&quot;*^)
and hence come nearer

f&quot; (a 4-1).

A little greater accuracy may be obtained by using in

stead of the highest difference the arithmetical mean of the

two differences next to the horizontal line on both sides of it.

We shall denote the arithmetical mean of two differences by
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the sign of the differences, adopted before, but using as the

argument the arithmetical mean of the arguments of the two

differences, so that we have for instance :

/ (a + &amp;gt;

,/(+ J)+/(++
2

As in this case the quantities within the parenthesis are

fractions for differences of an even order and integral num
bers for those of an odd order, while in the case of simple
differences they are just the reverse, this notation cannot give
rise to any ambiguity. If we stop for instance at the second

differences, we must use when we interpolate in a forward

direction the arithmetical mean of
f&quot; (a) and

/*&quot; (a -+- 1) or

,
so that we take now instead of the term

the term:

-?;* f
&quot; (a+ * } &quot;

&quot;-ri--
(/

&quot;

(o) + */&quot;

(a + )! -

Hence while using merely f&quot; (a) we commit an error

equal to the whole third term, the error which we now com

mit, is only:

+&amp;gt;-
-

If we have n = \, this error, depending on the third

differences, is therefore reduced to nothing, and as it is in

this case indifferent, which of the two formulae (2) or (3)
we use, as we can either start from the argument a and in

terpolate in a forward direction or starting from the argument
a-+-w interpolate in a backward direction, we get the most
convenient formula by the combination of the two. Now for
=

\ formula (2) becomes :

while formula (3) becomes, if the argument (o-f-to) is made
the starting point:

&quot;

(a -t-
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If we take the arithmetical mean of these two formulae,

all terms containing differences of an odd order disappear

and we obtain thus for interpolating a value, which lies ex

actly in the middle between two arguments, the following

very convenient formula, which contains only the arithmetical

mean of even differences:

- *

[/&quot;(a-H)
-
^ [/

IV(-K)-~ f/
V

where the law of progression is obvious.

Example. If we wish to find the longitude of Mercury
for Jan. 4 12h

,
we apply formula (2 a). The differences, which

we have to use, are the following:
I. Diff. II. Diff. III. Diff. IV. Diff.

+ 7 38&quot;. H-2 44&quot;. 3

Jan. 4 317 7 29&quot;. 5
_
21^2!jA_ + 10

&quot;

l

__

&quot;

7 22 10 - 4 2 54 . 5

6 324 29 39 ~~9 24 26 . 9~ 4 . 7

In this case we have n =
J ,

hence :

n~ 1
== A !L] = A n 2 = 7

&quot;&quot;2

~
8 3- 12 4 16

taking no account of the signs and we get:

arithmetical mean of the 4&quot; differences X T
7
g
=

corrected third difference 2 51&quot;. 3 X ^ = I ll&quot;. 4

corrected second difference 22 43&quot;. 8 X f
= 8 31&quot;. 4

corrected first difference 7 13 39&quot;. X
.

,

= 1 48 24&quot;. 7,

hence the longitude for Jan. 4 . 5

318 55 54&quot;. 2.

If we wish to find the longitude for Jan. 5.5, we have

to apply formula (3 a) and to use the differences, which are

on both sides of the lower one of the two horizontal lines.

Then we find the longitude for Jan. 5 . 5

322 36 56&quot;. 7.

In order to make an application of formula (4 a) we will

now find the longitude for Jan. 5 . 0, and get:

arithmetical mean of the 4th differences X T
3
-

6
= 1&quot;. 4

arithmetical mean of the 2 d differences X ^ = 2 52&quot;. 3

arithmetical mean of the functions = 320 48 34&quot;. 7

hence the longitude for Jan. 5.0

320 45 42&quot;. 4.
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Computing now the differences of the values found by

interpolation we obtain:

I. Diff. II. Diff. III. Diff.

Jan. 4.0 SIT&quot; r29 . 5

4.5 318 5554 .2
*

-hl 23&quot;.5 _ _

5.0 3204542.4 126.1
+

,/

5.5 322 3656 .7 128.9
2 8

6.0 324 29 39 . 9

The regular progression of the differences shows us,

that the interpolation was accurately made. This check by

forming the differences we can always employ, when we have

computed a series of values of a function at equal intervals

of the argument. For supposing that an error x has been

made in computing the value of
/&quot;(a),

the table of the diffe

rences will now be as follows :

Hence an error in the value of a function shows itself

very much increased in the higher differences and the greatest

irregularities occur on the same horizontal line with the er

roneous value of the function.

15. We often have occasion to find the numerical value

of the differential coefficient of a function, whose analytical

expression in not known and of which only a series of nu
merical values at equal intervals from each other is given.
In this case we must use the formulae for interpolation in

order to compute these numerical values of the differential

coefficients.

If we develop Newton s formula for interpolation ac

cording to the powers of w, we find:

/(oH-nuO =/(a) -f- n[f (a 4-^) /&quot; (a 4-1) -+- j

+
-^2 [/&quot; Ca H- 1) -/ &quot;

(a + f) 4

1.2.3 Ly

but as we have also according to Taylor s theorem:



/v &amp;gt; /v^^/M ,d*f(a)n*w-&amp;gt;d f(a)n U,&amp;gt;

/C + 0=/C)+ i_ B ,+ --,- i;
- +-Ta

-r 1^3 + ...

we find by comparing the two series:

VQ = JL
[/ ( -f- i)

-
|/&quot; (a + 1)+ I/

&quot;

(a-f-i)
-

...]

^ = 1- [/ ( + 1) -/&quot; (a -K|)+ ...].

More convenient values of the differential coefficients may
be deduced from formula (2) in No. 14. Introducing the

arithmetical mean of the odd differences by the equations:

etc.

we find:

/(a+nu,) =/() + / (a) 4- -^/ () + (^|^=^)

/&quot; (a)

(^D^CnLt)
1.2.3.4

/

This formula contains the even differences which are on

the same horizontal line with
/&quot;(a),

and the arithmetical mean

of the odd differences, which are on both sides of the hori

zontal line. Developing it according to the powers of n we

obtain :

/(a4-nu;)=/(a) + n [/ (a)
-

J: / &quot;(a) + ^fv
(a)
-

Tio/
VI1

(a)+ . . .]

H- Y~2 If&quot;W ~ A/ v
(o) H- F O /VI ()- ]

+ -
f/&quot; (a)

~ ^V
(a) + ^ /vn (a)

&quot;
-
]

and from this we find:

etc.

If we wish to find the differential coefficient of a function,

which is not given itself, for instance of f(a-\-nw\ we must

substitute in these formulae a-\-n instead of a, so that we

have:
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tfI t0 . P ,

,

J
, /&quot;

IV
(a-f-n) -h .. .

,. .&amp;gt;

a a z

etc.

The differences which are to be used now do not occur in

the table of the differences, but must be computed. For the

even differences such as
f&quot; (a -\- ri) for instance this compu

tation is simple, as we find these by the ordinary formulae

of interpolation, considering merely now /&quot; (fl), f&quot;(a-t-ri) etc.

as the functions, the third differences as their first ones etc.

But the odd differences are arithmetical means, hence we must
find a formula for the interpolation of arithmetical means. But
we have:

/ (0 + )=-
2

and according to formula (2) in No. 14:

/ (a
-

4 -h n) =/ (a
-

f) + / (a) 4-
^^/&quot; (a

(n+l)(n-l)
1 .2.3

/ (aH-i) 4- /&quot; (a) H-

1.2.3
~

J

therefore taking the arithmetical mean of both formulae we
find the following formula for the interpolation of an arith

metical mean:

) =/ (a) 4- nf&quot; (a) 4-
--&quot;--/&quot; (a) 4- { nf&quot; (a)

The two terms:

arise from the arithmetical mean of the terms:

n (n 1)

iT^ / ( I)

and

which gives:

l^/&quot;
() H- ^ f/&quot; (a 4- ) -/&quot; (a

-
])].
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Combining the two terms, which contain f
lv

(a), we may
write the above formula thus:

/ (aH_ w) =/ () -+- / (a) -h y/
&quot;

(a) + ^/^ () H- (7)

The formulae 5, 6 and 7 may be used to find the nu

merical values of the differential coefficients of a function for

any argument by using the even differences and the arith

metical means of the odd differences, whenever a series of

numerical values of the function at equal intervals is given.

We can also deduce other formulae for the differential

coefficients, which contain the simple odd differences and the

arithmetical means of the even differences. For if we in

troduce in formula (3) in No. 14 the arithmetical means of

the even differences by the aid of the equations:

/()= /(a + J) i/(oH-j)

etc.

we find, as we have:

(n-hl)n(n 1) _ ,
n (n 1 )= n (n 1) (n

-
1.2.3 1.2 1.2.3

etc.

If we write here w~h| instead of w, the law of the co

efficients becomes more obvious, as we get:

/[+ (n -hi) w] =f(a H- 1) -h / ( -h D + /&quot; (a+ i)

(!^i^^

Developing this formula according to the powers of w,

we find the terms independent of n:

hence :
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/[a+ + 1) w] =/( -h { w)

l920
/VII(a+4) - -

]

Comparing this formula with the development of f(a-\-\w+nw)

according to Taylor s theorem, we find:

(8)

etc.

These formulae will be the most convenient in case that

we have to find the differential coefficients of a function for

an argument, which is the arithmetical mean of two successive

given arguments. For other arguments, for instance a-+-(n-}-Qw

we have again:

,
1

=/ ( + 1 -*^) / (a-H + n)
da

etc.

Here we can compute the difference f (a-{-\-\-ri) as well as

all odd differences by the ordinary formulae of interpolation.

But as the even differences are arithmetical means, we must

use a different formula, which we may deduce from the for

mula (7) for interpolating an arithmetical mean of odd diffe

rences by substuting a -h \ instead of a and increasing all

accents by one, so that we have for instance:

TZ
/1V

(a -h

Example. According to the Berlin Almanac for 1848

we have the following right-ascensions of the moon.
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I. Diff. II. Diff. III. Diff. IV. DifF.

Juli 12 Oh

12h
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If we add to these the fourth differences multiplied by

P&amp;gt;

and divide by 144, we find the second differential co

efficients

for 1O -I- s
. 1432

lib .1417

12h . 1402.

where again the unit of time is one hour*).

C. THEORY OF SEVERAL DEFINITE INTEGRALS USED IN

SPHERICAL ASTRONOMY.

16. As the integral le- ~dt, either taken between the

limits and co or between the limits o and T or T and oo,

is often used in astronomy, the most important theorems re

garding it and the formulas used for its numerical compu
tation shall be briefly deduced.

The definite integral \e~^dt is a transformation of one

of the first class of Euler s integrals known as the Gamma
functions. For this class the following notation has been

adopted :

le x
.x&quot; dx= F(a\ (1)

o

where a always is a positive quantity, and as we may easily

deduce the following formula:

\e
x

.x&quot;

~
{ dx= \e

x

d(^&quot;^

= e
x

.

*&quot;

-f-
*

fxa
e

x dx

and as the term without the integral sign becomes equal to

zero after the substitution of the limits, we find:
CO &amp;lt;X

fir* . xa ~ l dx= fe*. x&quot;

J a J
dx

or: ar(a) = r(a+l} (2)

But as we have also:

*) Encke on interpolation and on mechanical quadrature in Berliner

Jahrbuch fur 1830 und 1837&quot;.

3
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it follows, that when n is an integral number, we have:

F(n} = (n \}(n 2)(n 3).... 1.

If we take in the equation (1) x= J
2
,
we find:

o

hence for a = \ :

fe-
2

.d/ =
I

In order to find this integral, we will multiply it by a

r
similar one \e~ yl

dy, so that we get:

( (&amp;gt;,/, ).
= f ,-&quot; rf ,

J&amp;gt;

d, =
Jj&amp;gt;&quot;

2+ &quot; 2)
&quot; rf*.

(I I) II tl

Taking here y = x t
,
hence d/ = t . dx , we find :

or as:

we find:

( I e~
2

d ty
= \ I

- =
^ (arc tang GO arc tang 0) = &amp;gt;

(i ii

hence :

From this follows JTQ) = J/TT, hence from equation (2):

r(|) = ||/7r, r (I)
= |1/7T etc.

If we introduce in equation (1) a new constant quantity

by taking x = ky ,
where k shall be positive in order that

the limits of the integral may remain unchanged, we find:

hence :

*V- ^= . (4)
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17. To find the integral le-^dt, various methods are

used. While T is small, we easily obtain by developing

-&amp;lt;
2

,, T3

X

and as we have \e~ *dt=
&amp;gt;

we also find from the above

formula the integral \e~ li
dt.

This series must always converge, as the numerators in

crease only at the ratio of T2
,
while the denominators arc con

stantly increasing; but only while T is small, does it converge
with sufficient rapidity. When therefore T is large, another

series is used for computing this integral, which is obtained

by integrating by parts. Although this series is divergent
if continued indefinitely, yet we can find from it the value of

the integral with sufficient accuracy, as it has the property,
that the sum of all the terms following a certain term is

not greater than this term itself.

We have:

.

or integrating by parts:

,-

By the same process we find:

&amp;gt;~

/2
) dt

~ rl
j in , , e

or finally

-^^=_ e
~ /2

ri- l

2t L 2&amp;lt;

1.3.5....(2n+ l) f -t*
2&quot;+ J

e

re

J

_*2 rf&amp;lt;

3
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or after substituting the limits:

f
, _e~

T i

[
1 _ l.3_ 1.3.5

=
2 T L 2712 (2r 2

)
2

(27
12

)
3

1.3. 5. ...(2?i-l) 1.3.5.... (5

The factors in the numerator are constantly increasing,

hence they will become greater than 2 T2
;
when this happens,

the terms must indefinitely increase, as the numerators in

crease more than the denominators. But if we consider the

remainder :

-hl) C

J
t

we can easily prove that it is smaller than the last pre

ceding term. For the value of the integral is less than
&

,11

multiplied by the greatest value of e~
2
between the limits T

and OD which is e~ /12
,
and as we have:

A = _ L. _1
J /-&quot;+- 2n+l T2 &quot;-

r

the remainder must always be less than:

1.3.5...2n 1 _

Now this expression is that of the last preceding term

with opposite sign, so that if the last term is positive, the

remainder is negative and less than it. In order therefore

to find a very accurate value of the integral, we have only

to see, that the last term which we compute is a very small

one, as the error committed by neglecting the remaining

terms is less than this very small term.

Another method for computing this integral, given by

Laplace, consists in converting it into a continued fraction.

If we put:

x
dx= 7, (a)

J
/

we find :
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rf7

df&amp;lt;

_
&amp;lt;

2 / X 2 2= 2te I e dx e

t

= 2* 71. (/?)

Now the nih differential coefficient of a product is:

d .xy __&amp;lt;*.*
d&quot;

-
* dy ,

(n 1) e*-8* *Py ,n &quot;

rf^&quot;-
1

rfir

&quot;

7
&quot;

1.2 rfr 2
rf^

2

hence we have:

c/&quot;
+1 77 rf- 7

If we denote the product 1.2.3 ---- n by w/, we may write

this equation thus:

= 2 o
r

=
&quot;

or denoting -7-7-7 by Un :

(n H- 1) 67rt+ i
= 2 * / -4- 2 7w_i.

This equation is true for all values of n from n = 1,

when t/
()

is equal to the function U itself. We find from it:

hence :

But we have from equation (/9):

~ - = 2t ,

hence :

1

2&amp;lt;

o j -i
&quot;

U
and from equation (; ) follows:

1

--
2*

Z7,
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If we substitute this value in the former equation and

continue the development, we find:

1+ 3

1 H- etc.,

therefore
, taking ^^ = g

(7)

14-3?
14-4?&quot;

1 4- etc.

By one of the three formulae (5), (6) or (7) we can

always find the value of the integral Ie~ f2 dt or ie~ i2
dt, but

T

on account of the frequent use of this transcendental function

tables have been constructed for it. One of such tables is

given in Bessel s Fundamenta Astronomiae for the function:

/J.-**,

from which the other forms are easily deduced. The first

part of this table has the argument T and extends from T=
to T=l, the interval of the arguments being one hundreth.

But as according to formula (6) the function is the more

nearly inversely proportional to its argument, the greater T

becomes, the common logarithms of T are used as arguments
for values of T greater than 1. This second part of the

table extends from the logarithm T == 0.000 to log. T= 1.000,

which for most purposes is sufficient. For still greater ar

guments the computation by formula (6) is very easy.

18. The integral

- dx
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can be easily reduced to the one treated above. For if we
introduce another variable quantity, given by the equation:

,

,

the above integral is transformed into:

2 1

from which we have dx= dt,

if we take : T= cotang } ^ .

If now we introduce the following notation

we have : I
^ ^=: dx= }

-j-
^H (8)

and also :

If we diflPerentiate the expression e~x Vcos^2
-f-^

n
x

ft

with respect to x and then integrate the resulting equation
with respect to x between the limits and oo, we easily find :

where T= cotang t

And as we have by formula (9)

o
P

we find:

9
J \l 5-2 i

^ S111
=&amp;gt;

of which formulae we shall also make use hereafter.

(10)
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D. THE METHOD OF LEAST SQUARES.

19. In astronomy we continually determine quantities

by observations. But when we observe any phenomenon re

peatedly, we generally find different results by different ob

servations, as the imperfection of the instruments as well

as that of our organs of sense, also other accidental ex

ternal causes produce errors in the observations, which render

the result incorrect. It is therefore very important to have

a method, by which notwithstanding the errors of single ob

servations we may obtain a result, which is as nearly correct

as possible.

The errors committed in making an observation are of

two kinds, either constant or accidental. The former are

such errors which are the same in all observations and which

may be caused either by a peculiarity of the instrument used

or by the idiosyncrasy of the observer, which produces the

same error in all observations. On the contrary accidental

errors are such which as well in sign as in quantity differ

for different observations and therefore are not produced by
causes which act always in the same sense. These errors

may be eliminated by repeating the observations as often as

possible, as we may expect, that among a very great number

of observations there are as many which give the result too

great as there are such which give it too small. But the final

result must necessarily remain affected by constant errors, if

there are any, when for instance the same observer is ob

serving with the same instrument. In order to eliminate also

these errors, it is therefore necessary, to vary as much as

possible the methods of observation as well as the instruments

and observers themselves, for then also these errors will for

the most part destroy each other in the final result, deduced

from the single results of each method. Here we shall con

sider all errors as accidental, supposing, that the methods

have been so multiplied as to justify this hypothesis. But

if this is not the case the results deduced according to the

method given hereafter, may still be affected by constant

errors,
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If we determine a quantity by immediate measurement,

it is natural to adopt the arithmetical mean of all single ob

servations as the most plausible value. But often we do not

determine a single quantity by direct observations, but only

find values, which give us certain relations between several

unknown quantities; we may however always assume, that

these relations between the observed and the unknown quan

tities have the form of linear equations. For although in ge

neral the function
/&quot;(, ?/, L, etc.) which expresses this relation

between the observed quantities and the unknown quantities

, ?/, C, will not be a linear function, we can always procure

approximate values of the unknown quantities from the ob

servations and denoting these by , ?; ,
and f and assuming

that the correct values are -{-.T, ^o-4-y? Jo ~+&quot;
z etc., we

find from each observation an equation of the following form :

,... 9 , ,

provided that the assumed values are sufficiently approximate
as to allow us to neglect the higher powers of ic, ?/, z etc.

Here
/&quot;(, r^ ...) is the observed value, /X , &amp;gt;/, ...)

the value computed from the approximate values, hence

tfco o ) f(i Vi f )
= n is a known quantity.

Denoting then -^ by a,

f~
by 6, by c etc. and distinguish

ing these quantities for different observations by different ac

cents, we shall find from the single observations equations

of the following form:
= n -|- a x+

l&amp;gt;y
-+- c z -f- . . .

,

= n -+- a x -h //y+ r z -f- . . .
,

etc.,

where a?, ?/,
a ... are unknown values, which we wish to de

termine, while n is equal to the computed value of the function

of these unknown quantities minus its observed value. There

must necessarily be as many such equations as there are ob

servations and their number must be^as great as possible,,

in order to deduce from them values of a;, */, z etc. which

are as free as possible from the errors of observation. We
easily see also

,
that the coefficients a

,
b

,
c ---- in the dif

ferent equations must have different values
;

for if two of

these coefficients in all the different equations were nearly
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equal or proportional, we should not be able to separate the

unknown quantities by which they are multiplied.

In order to find from a large number of such equations

the best possible values of the unknown quantities, the fol

lowing method was formerly employed. First the signs of

all equations were changed so as to give the same sign to

all the terms containing x. Then adding all equations, an

other equation resulted, in which the factor of x was the

largest possible. In the same way equations were deduced,

in which the coefficient oft/ and z etc. was the largest pos

sible and thus as many equations were found as there were

unknown quantities, whose solution furnished pretty correct

values of them. But as this method is a little arbitrary, it is

better to solve such equations according to the method of least

squares, which allows also an idea to be formed of the ac

curacy of the values obtained. If the observations were per

fectly right and the number of the unknown quantities three,

to which number we will confine ourselves hereafter, three

such equations would be sufficient, in order to find their true

values. But as each of the values n found by observations

is generally a little erroneous, none of these equations would

be satisfied, even if we should substitute the exact values of

#, y and z\ therefore denoting the residual error by A^ we

ought to write these equations thus:

A= n 4- ax-}- by-i- cz,

/y=,/+ * 4-
/&amp;gt;V
+ cX

etc.,

and the problem is this: to find from a large number of such

equations those values of x, y and z, which according to

those equations are the most probable.

20. We have a right to assume, that small errors are

more probable than large ones and that observations, which

are nearly correct, occur more frequently than others, also

that errors, surpassing a certain limit, will never occur. There

must exist therefore a certain law depending on the magni
tude of the error, which expresses how often any error oc

curs. If the number of observations is TW, and an error of

the magnitude A occurs according to this law p times,
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expresses the probability of the error A 5
and shall be de

noted by (/-(A). This function
&amp;lt;/ (A) must be therefore zero,

if A surpasses a certain limit and have a maximum for

/\= 0, besides it must have equal values for equal, positive

or negative values of A- As we have p = m y (A) ,
there

will be among m observations
m&amp;lt;f (A) errors of the magni

tude A? likewise my (A ) errors of the magnitude A etc.; but

as the number of all errors must be equal to the number of

all observations, we have:

.

i.

This sum being that of all errors must be taken between

certain limits k and -f- k ,
but as according to our hypo

thesis
&amp;lt;^(A)

is zero beyond this limit, it will make no dif

ference, if we take instead of the limits k and -{-k the

limits oo and -+- oo. But as any A between these limits

are possible,, as we cannot assign any quantity between the

limits k and -t-&, which may not possibly be equal to an

error, as therefore the number of possible errors, hence also

the number of the functions
&amp;lt;/) (A) is infinite, each

cf (A) must

be an infinitely small quantity. The probability that an error

lies between certain limits, is equal to the sum of all values

f(A) which lie between these limits. If these limits are in

finitely near to each other, the value
rp (A) may be considered

constant, hence
&amp;lt;/)(A).dA expresses the chance, that an er

ror lies between the limit A and A H- ^A- The probability
that an error lies between the limits a and 6, is therefore

expressed by the definite integral

1

9 (A) .
&amp;lt;/A

and we have according to the formula found before:

According to the theory of probabilities we know, that

when
r/&amp;gt;(A), ^ (A ) etc. express the probability of the errors

A? A etc. the probability, that these errors occur together,
is equal to the product of the probabilities of the separate
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errors. If therefore W denotes the probability, that in a se

ries of observations the errors A? A ) A&quot;
etc. occur, we have:

Therefore if for certain assumed values of a?, ?/, z the

errors A? A , A&quot;
etc. express the residual errors of the equa

tions (1), W is the probability that just these errors have

been made and may therefore be used for measuring the pro

bability of these values of ,T, y and z. Any other system of

values of x, y and z will give also another system of resi

dual errors and the most plausible values of a?, y and z must

evidently be those, which make the probability that just these

errors have been committed a maximum, for which therefore

the function W itself is a maximum. But in order to deter

mine, when
(f- (A) is a maximum, it is necessary to know the

form of this function.

Now in the case that there is only one unknown quan

tity, for which the m values w, n\ n&quot; etc. have been found

by observations, it is always the rule, to take the mean of

all observation as the most probable value of x. We have

therefore :

4- n -f- n&quot; 4- . .

x=
m

or: n _ a._|_ n _ ar _|_ n _ a..... == o
j 0)

where n x, n x etc. correspond to the errors A, so that

we have n x= /\, n x= /\ etc. But as W is a maximum

for the most probable value of
a?, we find differentiating equa

tion (2) in a logarithmic form:

dx d{\ dx

rfA = rfA

c?:r JJT
and as in this case we have *----= --= etc. = 1, we find

.* f/.r

or:

(-,)
d-:]?8fAT^ +(_,) J^2SJ^=^-+....0. W
(n x) d . (n a?) (n a?) d. (n x)

But as according to the hypothesis the arithmetical mean

gives the most probable value of a?, the two equations (a)

and (6) must give the same value for a?,
hence we have:

1 c/.logyCn a?) _ 1 (
!_^

oS (p(n_
x) _ etc

__ ^
n x d(n x) n

1

x d(n x)
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where k is a constant quantity. We have therefore the fol

lowing equation for determining the function

d_&amp;gt;
log y (A)_ _ ,

A.rfA

hence
logy (A)= ?A 2

4-logC
and

The sign of k can easily be determined
,

for as y (A)

decreases when A is increasing, k must be negative; we may
therefore put \k=- ft

2
,

so that we have q(/\^=Ce **^*.

In order to determine C we use the equation:

--

and as we have ie~x *

dx= J/TT, we get le~*
a^ a

d/\ ==
,

00 Of)

hence ^==1 or 0=- and finally:

The constant quantity ft remains the same for a system
of observations, which are all equally good or for which the

probability of a certain error /\ is the same. For such ,

system the probability that an error lies between the limits

rV and -f-rV is:

-hS
Now if in another system of observations the proba

bility of an error /\ is expressed by
-

/
-e~

,
in this sys

tem the probability that an error lies between the limits _ &amp;lt;Y

and H-d ,
is:

+ +h

Both integrals become equal when h &amp;lt;)
= h rV. Therefore

if we have h = 2ft
,

it is obvious, that in the second system
an error 2x is as probable as an error x in the first system.
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The accuracy of the first system is therefore twice as great
as that of the second and hence the constant quantity h

may be considered as the measure of precision of the obser

vations.

21. Usually instead of this measure of precision of

observations their probable error is used. In any series of

errors written in the order of their absolute magnitude and

each written as often as it actually occurs, we call that error

which stands exactly in the middle, the probable error. If

we denote it by r, the probability that an error lies between

the limits r and -f- r, must be equal to \. Hence we have

the equation:

A_ C W* = ^

r

or taking h^ = t

hr

dt= 4-, therefore
|
e~

l
dt= -

J
o n

I/ TT

But as the value of this integral is = 0.44311, when

hr = 0.47694 *), we find the following relation between r

and h:

0.47694

nhr
9 r

The integral , Ie~ t2 dt gives the probability of an er

ror, which is less than n times the probable error and if we

compute for instance the value of this integral for n = \,

taking therefore nhr= 0.23847, we find the probability of

an error, which is less than one half of the probable error

equal to 0.264, or among 1000 observations there ought to

be 264 errors, which are smaller than one half the probable
error. In the same way we find, taking n successively equal
to |, 2, |, 3, J, 4, |, 5, that among 1000 observations there

ought to occur:

) On the computation of this integral see No. 17 of the introduction.
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688, where the error in less than fr

823, 2r

908, . |r

956, 3r

982, \r

993, 4r

998, fr

999, 5r,

and comparing with this a large number of errors of obser

vations, which actually have been made, we may convince

ourselves, that the number of times which errors of a certain

magnitude are met with agrees very nearly with the number

given by this theory.

We will find now the value of h. Suppose we have a

number of m actual errors of observation, which we denote

by &, A etc., the probability that these occur together is:

A -AMAA+A A +A&quot;A&quot;+....]=^ C

and if we further suppose, that these errors were actually

committed and hence cannot be altered, the maximum of W
will depend merely on h and that value of ft, which gives

the maximum, will be the most probable value of h for these

observations. Denoting now for the sake of brevity the sum
of the squares of the errors A? A etc. by [A A]? we have:

*-*.-*&quot;],

and we easily find the following conditional equation for the

maximum :

hence follows : -1-
h\/2

This square root of the sum of the squares of real errors

of observations divided by their number, is called the mean
error of these observations. If this error had been made in

each observation, it would give the same sum of the squares
as that of the actual errors. If we denote it by f, or put:
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we have:

and: / = 0.47694 |/ 2 e

r= 0.074489 s.

22. We will now solve the real problem: To find from

a system of equations (1), resulting from actual observations,

the most probable values of the unknown quantities x, y and z

and at the same time their probable error as well as that of

the single observations.

If we substitute in the equation (2) instead of
y&amp;gt; (A),

&amp;lt;pGY)
etc. their expressions according to equation (3), we

find:

A&quot; -A 2
[A

2 +A 2
+A&quot;

2 + ...]

&quot;gF

if we suppose that all observations can be considered as

equally good. Here A, A , A&quot;
etc. are not the pure errors

of observations, but depend still on the values of #, y and a.

But as for the most probable values of a?, y and z the pro

bability that the then remaining errors have occurred to

gether, must be as great as possible, as they become as near

as possible equal to the actual errors of observations, which

must be expected among a certain number of observations,

we see that the values of the unknown quantities must be

derived from the equation:

A 2 -H A 2 + A&quot;

2 -h = minimum

or the sum of the squares of the residual errors in the equa
tions (1) must be a minimum. Hence this method to find

the most probable values of the unknown quantities from such

equations is called the method of least squares.

If we first consider the most simple case, that the values

of one unknown quantity are found by direct observations,

the arithmetical mean of all observations is the most probable
value. This of course follows also from the condition of

the minimum given above. For the residual errors for any
certain value of x are :

A= x ??, i\ ==x n, l\ = x&quot;
w&quot;,

etc.

We get therefore for the sum of the squares of the re

sidual errors, if we denote
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the sum of n -\-ri -\-n&quot; -J-... by [n]

the sum of w2
-|- n

&amp;gt;2

-\- w&quot;

2
-{-... by [n n]

and the number of observations by m:

nY= mx* 2x[n] -+-
[nr&amp;gt;]

As all terms of the second member are positive, the

sum of the squares will become a minimum, when:

and the sum of the squares of the residual errors will be:

In order to find the probable error of this result from

the known probable error of a single observation, we must

solve a problem, which on account of an application to be

made hereafter we will state in a more general form, namely:
To find the probable error of a linear function of several

quantities a?,
x etc., if the probable errors of the single quan

tities a;, x etc. are known.

If r is the probable error of x and we have the simple
function of x:

X= ax,

it is evident, that ar is the probable error of X. For if x
is the most probable value of a?, ax

&amp;lt;}

is the most probable
value of X and the number of cases, when x lies between

the limits x r and a? H-r is equal to the number of cases

in which X lies between a? ar and aa? -+-r.

Let X now represent a linear function of two variables

or take:

X=x + x

and let a and a represent the most probable values and r

and r the probable errors of x and x. As we must take

then for the errors x and x respectively h= and h = c

,,

where c is equal to 0.47694, we have the probability of any
value of x:
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and the probability of any value of x :

hence we have the probability that any two values x and x

occur together:

We shall find therefore the probability of two errors x

and x whfch satisfy the equation X=*x-\-x\ if we substitute

X x for x in the above expression and denoting this pro

bability by FT, we get:

W= r- e
rr 7t

If we perform now the summation of all cases, in which an

x may unite with an x to produce X, where of course we
must assign to x all values between the limits oo and -\- oo,

or in other words if we integrate W between these limits,

we shall embrace all cases, in which X can be produced or

we shall determine the probability of X.

Uniting all terms containing x and giving them the form

of a square, we easily reduce the integral to the following

form :

/ &quot; dx

2 C -*

if we put :

~-
r*(X a)-hr

&amp;gt;a

a&amp;gt;

rr

and as we have

we find the probability of any value of X:

-&&-*-*
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But this expression becomes a maximum, when X= a -+- ,

hence the most probable value of X is equal to the sum of

the most probable values of x and x and the measure of

accuracy for X is -?=, hence the probable error of X is

J/r2_j_ r 2 From this follows in connection with the formula

proved before, that when:

the probable error of X is equal to Va z r2 -f- a 2 r 2
.

We may easily extend this theorem to any number of

terms, as in case we have three terms, we can first combine

two of them, afterwards these with the third one and so on.

Hence if we have any linear function:

X== ax H- a x -h a&quot;x&quot; + ....,

and if r, r
,

r&quot; etc. are the probable errors of re, x\ x&quot; etc.

the probable error of X is equal to:

From this we find immediately the probable error of the

arithmetical mean of m observations
,
each of which has the

probable error r; for as:

we have the probable error of the mean equal to
j/
m .

-
a

r
or .

Vm

The probable error of the arithmetical mean of m obser

vations is therefore to the probable error of a single obser

vation as : 1 or its measure of precision to the measure
V m

of a single observation as h]/m:h. Often the relative accu

racy of two quantities is expressed by their weights, which

mean the number of equally accurate observations necessary
in order to find from their arithmetical mean a value of the

same accuracy as that of the given quantity. Therefore if

the weight of a single observation is 1, the arithmetical mean
of m observations has the weight m. Hence the weights of

two quantities are to each other directly as the squares of
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their measures of precision and inversely as the squares of the

probable errors *).

It remains still to find the probable error r of a single

observation. If the residual errors x n= & of the original

equations after substituting the most probable value of x were

the real errors of observation, the sum of their squares di

vided by m would give the square of the mean error of an

observation according to No. 20, or this error itself would

be T/fclJ. But as the arithmetical mean of the observations
r m

is not the true value, but only the one which according to

the observations made is the most probable, except in case

that the number of observations is infinitely great, the re

sidual errors will not be the real errors of observation and

differ more or less from them. Now let x
()
be the most pro

bable value of x as given by the arithmetical mean, while

#
() -{- may be the true value which is unknown. By substi

tuting the first value in the equations we get the residual

errors o? w, x
l}

ri etc. which shall be denoted by A? A
etc. while the substitution of the true value would give the

errors a? -r- n= $ etc. We have therefore the following

equations :

A + =
&amp;lt;?,

A + =
&amp;lt;?

,

etc.,

and if we take the sum of their squares observing that the

sum of all A is equal to zero, we find according to the adopted

notation of sums:

[A A] 4- &amp;gt;P
=

[&amp;lt;?&amp;lt;?],

which equation shows that the sum of the squares of the

residual errors belonging to the arithmetical mean is always

too small.

As we have
[&amp;lt;)c)]

= W 2
,
when denotes the mean error

of an observation and further [A A] [n %] ,
we

&quot;

can write

the equation also in the following form:

*) If therefore two quantities have the weights p = ^ and p = -j^

1 pp
the weight of their sum is -=-- -,^=2__ a
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Although we cannot compute from this equation the va

lue of
,

as 2? is unknown
,

still we shall get this value as

near as possible, if we substitute instead of g the mean error

of x and as we have found this to be equal to

thus :

,

y m
7
we find

for the mean error of an observation and hence the probable
error :

r- 0.674489 -1

r m

Furthermore we find the mean error of the arithmetical

mean :

and the probable error:

0.674489

Example. On May 21 1861 the difference of longitude
between the observatory at Ann Arbor and the Lake Survey
Station at Detroit was determined by means of the electric

telegraph, and from 31 stars observed at both stations the

following values were obtained:

Difference
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Here we find the sum of the squares of the residual

errors [wJ =1.77, and as the number of observations is 31,

we find:

the probable error of a single observation==b s
. 164

hence the probable error of the mean of all observations

Although we cannot expect that in this case the errors

of observations, the number of observations being so small,

will be distributed according to the law given in No. 21, yet

we shall find, that this is approximately the case. According
to the theory, the number of observations being 31, the num

ber of errors

smaller than |r, r, f?*, 2r, fr, 3r

ought to be 8, 15, 21, 25, 28, 30

while it actually is according to the above table:

6, 12, 22, 24, 29, 30.

The error which stands exactly in the middle of all er

rors written in the order of their magnitude and which ought
to be equal to the probable error is 0,18.

23. In the general case, when the equations (1) derived

from the observations contain several unknown quantities, the

number of which we will limit here to three, the most pro

bable values of these quantities are again those
,
which give

the least sum of the squares of the residual errors. As this

sum must necessarily be a minimum with respect to x as

well as to y and 3, this condition furnishes as many equa
tions as there are unknown quantities, which therefore can

be determined by their solution.

The equation of the minimum with respect to x is as

follows :

...
)ax ax

or as we have according to equations (1) ^-=a,
- =a etc.

we get:

A + AV + A&quot;a&quot;-h...
= 0.

If we substitute in this for A? A etc. their expressions

from (1) and if we adopt a similar notation of the sums as

before, taking:
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a a -f- a a -f- a&quot; a&quot; -+- . . . = [a a]

and a 6 4- a b -+- a&quot; b&quot; -f- . . . = [a b] etc.

we get the equation:

[a a] x -h [ab] y -f- [ac] z -f- [aw] = 0; (4)

and likewise
[
a &] x + [bb]y-+- [b c] z 4- [6 n]

= o (5)

and
[rt C] * -j_ [^ c

] y -|- [
c c] z 4- [cwj

= o (C)

from the two equations of the minimum with respect to y
and z. The solution of these tree equations gives the most

probable values of x, y and 3.

In order to solve them we multiply the first byJ
[aa]

and subtract it from the second, likewise we multiply the

first by p
and subtract it from the third. Thus we obtain

two equations without #, which have the form:

[66 I ]y + [6c 1]+[6i I ]
= (D)

when we take

[Ml ] -[]_fe^ , [6c,] =[c] - fe|^
which equations explain the adopted notation.

If we multiply now the equation (D} by ~p-|
and sub

tract it from (JS), we find:

[cc al*H-[cw a ]
= (F),

where we have now:

From equation (F) we find the value of 3, while the

equations (D) and (^4) give the values of y and x.

If we deduce [A
2
]
from the equations (1) we find with

the aid of equations (4), (5) and (C) for the sum of the

squares of the residual errors:

[^2]
_

[ww] + [
fln

]
x _}_ [

6n
] y _|_ [cw]

2&amp;lt;

In order to eliminate here #, / and 3, we multiply equa

tion ^1 by | ^j

and subtract it from the above equation, which

gives :

=
[nn]

- Cn
- + [6m]y -H[cn,] *.

If we then multiply the equation (/&amp;gt;) by -~ and sub-
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tract it from the last equation, we get:

and if we here substitute the value of z from (F) we find

at last for the minimum of the squares of the errors :

, , [an] Q..P [cn 2 ]
2

We can find the equations for the minimum of the squares

of the errors also without the differential calculus. For if

we multiply each of the original equations (1) respectively

by ax, by, cz and n and add them, we find:

[A A] = [ A] * + [ft A] y + [&amp;lt; A] 4- A] (a),

where
[ A] = [a a] x 4- [a 6] y H- [a c] 2 4- [a n\ (ft)

etc.

If we now substitute in (a) instead of # its value taken

from (6), we find:

where

Then substituting in (c) for y its value taken from the first

of the equations (d), we find:

[A A] = j^r 4- n^f + tc A 2 ] + [n A 2 ], (c)

where now

and if we finally substitute in (e) for 3 its value taken from

the first of these last equations, we have:

and we easily see that we have [Aa] = [
WWJ-

As the first three terms on the right side of equation (#),

which alone contain x, y, and z, have the form of squares,

we see, that in order to obtain the minimum of the squares

of the errors, we must satisfy the following equations [/\]= 0,

[6/\ 1 ]
= and |flA2 l 0, which are identical with those we

found before. We see also, that [w/?3] is the minimum of

the squares of the errors.
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24. The theorem for the probable error proved in No. 22

will serve us again to find the probable errors of the un

known quantities, as we easily see by the equations A^ D
and F that the most probable values of .T, y and z can be

expressed by linear functions of w, ri, n&quot; etc.

For in order to find x from these three equations, we
must multiply each by such a coefficient that taking the sum

of the three equations the coefficients of y and 3 in the re

sulting equation become equal to zero. Therefore if we mul

tiply (A} by
*

, (D) by -j , (F) by =4-
]
and add the

three equations, we get the following two equations for de

termining A and A&quot;:

and we have:

In order to find y we multiply (D) by -f- , (F) by r
-~ and

Lo]J L C&amp;gt;C 2J

adding them we get :
&quot;

and
.

-

At last we have:

__z| J// x&amp;lt;

[aa]
~~^

Developing the quantities [ftwj] and [cw2], we easily find:

[&n,]=4 [an]-f-[6w] (77),

[cn 2 ] ==^&quot;[aw] -f- 5 [6n] +[cw] (5
1

),

and as we may change the letters, the quantities in paren
thesis being of a symmetrical form, we find also:

[&&,]= .4 [&] + [& 6] (0,

[c c 2 ]
= A&quot; [a c] -f- 5 [6 c] -f- [c c] (x),

[6 c 2 ]
=

A&quot; [a 6] -h B \b 6] + [6 c]
=

(A),

[a c 2 ]
=

yl&quot; [ ] + & [a &]+ [a c] = Q (^).
*

)

*) The two last equations we may easily verify with the aid of the

equations (a), (/) and (8).
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Now as [an] as well as [6%]. and [c 2]
are linear func

tions of n, we can easily compute their probable errors. First

we have [a n]
= a n -+- a ri -h a&quot; n&quot; -+- If therefore r de

notes the probable error of one observation, that of [an]
must be:

r ([an])
= r J/7?a~4-Va 4~ a&quot; a&quot; 4- . .

= r V[aa\.

Every term in \bn^\ is of the following form (A
1

-r-6)w.

In order to find the square of this, we multiply it success

ively by A an and bn and find for the coefficient of ir\

A (A a a 4- a fi) 4- A a b -+- 1&amp;gt; b.

This therefore must also be the form of the coefficients

of each r2 in the expression for the square of the probable

error of [&wj or we have:

[6 Wl ])
=

[_A (A[aa] 4- [aft]) 4- A [ab] 4- [66]] r2
,

or: r([6,])=rYp 1 ],

as we find immediately by the equations () and
(&amp;lt;.).

At last the coefficient of each n in the expression of

[cn.2 ] is:

Aa+ Bb+
Taking the square of this we find:

A&quot;(A&quot;aa-\- B ab

Now taking the sum of all single squares, we find the

coefficient of / in the expression of (r[cw.2])
2

:

A&quot;(A&quot;[aa] + B [ab] + [ac] )

4-B 1

(A&quot; [a b] 4- B [bb] 4- [6 c])

which according to the equations (x), (A) and
(/&amp;lt;)

is simply

[cc2]; hence we have:

r[cw 2 ]
= -/-. K[cca]

We can now find the probable errors of x, y and a without

any difficulty. For according to equation (7) we have for

the square of the probable error of x the following ex

pression :

A&amp;gt;A&amp;gt; A &quot;A
&quot;\

[66 l ]&quot;

+&quot;

[cca]i*
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Likewise we find:

K&amp;lt;/)]

2
=&amp;gt;

2

j|-

aild [r(z)]
2 =r 2

It remains still to find the probable error of a single

observation. If we put for x,.y and z in the original equa
tions (1) any determinate values, we may give to the sum

of the squares of the residual errors the following form:

In case that we substitute here for #, y and z the most

probable values resulting from this system of equations, the

quantities [a A] 5 [^AJ and
[
C A2J become equal to zero and

the sum of the squares of the residual errors resulting from

these values of #, y and z is equal to [wwj. But these val

ues will be the true values only in case that the number of

observations is infinitely great. Supposing now, that these

true values were known and were substituted in the above

equations, [A A] would be the sum of the squares of the

real errors of observation and we should have the following

equation :

[aa] [bb,] [cc 2 ]

where now the quantities [a A] 5 [&AJ and [cA2J would be a

little different from zero. As all these terms are squares,
we see that the sum of the squares as found from the most

probable values is to small and in order to come a little

nearer the true value we may substitute for [a A] etc. their

mean errors. But as in the equations:

ax 4- by 4- cz -f- n = A
etc.

no quantity on the left side is affected by errors except ft,

A must be affected by the same errors and the mean errors

of [a A] 5 [&Ai] and [cA2]
are equal to those we found for

[aw], [6wj] and [cw2]. Substituting these in the above equa
tion we find:

- - -3
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Hence the mean error of an observation is derived from

a finite number of equations between several unknown quan
tities by dividing the sum of the squares of the residual er

rors, resulting from the condition of the minimum, by the

number of all observations minus the number of unknown

quantities and extracting the square root.

Likewise we find for the probable error of an obser

vation :

0.674489
m 3

Note 1. We have hitherto always supposed, that all observations, which

we use for the determination of the unknown quantities, may be considered

as equally good. If this is not the case and if A, h
,

h&quot; etc. are the mea

sures of precision for the single observations, the probability of the errors A,

A etc. of single observations is expressed by:

h -A 2 A 2 h -7/ 2 A 2

V
e

y/
Hence the function W becomes in this case:

h.h .h&quot;... -(/,
2 A 2 +A A 2

+/&amp;lt;&quot;

2
A&quot;

2 + ..0

&quot;orav

1

and the most probable values of or, y nnd z will be those, which make

the sum

7,242 _|_ 7/2 A 2
-f-A&quot;

2
A&quot;

2
4-....

a minimum. In order therefore to find these, we must multiply the original

equations respectively by h, h
,

h&quot; etc. and then computing the sums with

these new coefficients perform the same operations as before.

Note 2. If we have only one unknown quantity and the original equa

tions have the following form:

= n -t- ax,
= n H-o *,

0=w&quot;-f-rt&quot;ar, etc.,

we find x-= r
- with the probable error r r

=
, where r denotes

[] V(aa\
the probable error of one observation.

25. This method may be illustrated by the following

example, which is taken from Bessel s determination of the

constant quantity of refraction, in the seventh volume of the

^Koenigsberger Beobachtungen&quot; pag. XXIII etc. But of the

52 equations given there only the following 20 have been

selected, whose weights have been taken as equal and in

which the numerical term is a quantity resulting from the

observations of the stars, while y denotes the correction of
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the constant quantity of refraction and x a constant error

which may be assumed in each observation.

The general form of the equations of condition in this

case is n= x-\-by, as the factor denoted before by a is equal
to 1, and the equations derived from the single stars are:

Residua]
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If we compute now the sums for our example, we find

the following two equations for determining the most pro

bable values of x and y:

4- 20.000 x 4- 3014.80 y 12.72= 0,

4- 3014.80 x 4- 844586.1y 3700.65 = 0.

The solution of these equations can be made in the fol

lowing form, which may easily be extended to more unknown

quantities :

[a a] [a 6] [an] [wn]

4-20.000 4-3014.80 -12.72 20.28

1.301030 3.479259 1.104487, ^- 8.09

Ian] =12.72 [66] [6n] 12.19

[a 6]* = 4- 13.78 4-844586.1 3700.65 ^~ 8.15
[*&|J

4- 1.06 4-454452.0 -1917.41 [wn 2 ]
= 4.04

0.025306,, [66,]= 4-390134.1 [few,]= 1783.24

1.301030 log [6n,] 3.251210

log*= 8.724276,, log [66,] 5.591214

x= 0&quot;. 053 log y = 7.659996

y = 4- 0.0045708

In case that we have computed the quantities [as], [bs] etc.

we may compute also [6*J and use the equation [661]
= [6sJ

as a check. In the case of 3 unknown quantities we should

use [66T] -}- [6cJ = [6*J and [ecj = [csj and similar equa
tions for a greater number of unknown quantities.

In order to compute the probable errors of x and y,

we use besides [66,] also the quantity

[a a,]
=

[a a] --^-~
= H- 9.2384.

Then we find the probable error of the quantity n for a

single star:

,.= 0.67449
|/

L
-

&quot;

=0.3195,

hence the probable errors of x and y :

^V^,^
~ - = d=0&quot;.0005116.

We see therefore, that the determination of x from the

above equations is very inaccurate
,

as the probable error is

greater than the resulting value of x; but the probable er-
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ror of the correction of the constant quantity of refraction

is only | of the correction itself.

If we substitute the most probable values of x and y

in the above equations, we find the residual errors of the

several equations, which have been placed in the table above

at the side of each equation. Computing the sum of the

squares of these residual errors, we find 4.04 in accordance

with [wwj, thus proving the accuracy of the computation by
another check.

Note. On the method of least squares consult: Gauss, Theoria motus

corporum coelestium, pag. 205 et seq. Gauss, Theoria combinationis obser-

vationum erroribus minimis obnoxiae. Encke in the appendix to the Ber

liner Jahrbucher fur 1834, 1835 und 1836.&quot;

E. THE DEVELOPMENT OF PERIODICAL FUNCTIONS FROM GIVEN
NUMERICAL VALUES.

26. Periodical functions are frequently used in astro

nomy, as the problem, to find periods in which certain pheno
mena return, often occurs; but as these are always comprised
within certain limits without becoming infinite, only such pe
riodical functions will come under consideration as contain

the sines and cosines of the variable quantities. Therefore
if X denotes such a function, we may assume the following
form for it:

X= a -{-a, cos a: -+- a 2 cos2.r -+- a 3 cosSx -h ...

-f- 6, sin ar-f- 6 2 sin 2x-\- b a sin 3 a: H- ...

Now the case usually occurring is this, that the nume
rical values of X are given for certain values of x, from
which we must find the coefficients, a problem whose solution

is especially convenient, if the circumference is divided in n

equal parts and the values of X are given for #= 0, x=?,
x=== 2 ~ etc - to x= (n 1) -~-, as in that case we can make

use of several lemmas, which greatly facilitate the solution.

These lemmas are the following.
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If A is an aliquot part of the circumference, nA being

equal to 2?r, the sum of the series

sin A-\- sin 2.4 -f- smSA -h ... -+- sin (n I) A

is always equal to zero; likewise also the sum of the series

cos A H- cos 2A -f- cos 3 A-+- . . . -|-cos(n 1)^,

is zero except when A is equal either to 2 n or to a mul

tiple of 2 TT, in which case this sum is equal to w.

The latter case is obvious, as the series then consists

of n terms, each of which is equal to 1. We have there

fore to prove only the two other theorems. If we now put:

2?r &quot;27t

cos r h i sin r = 1 r
,

n n

i

where we take i= Vl and T=e n

, we have:
r .,_! r= 1 r n 1

2 9 yj. __,
J&amp;gt; 1

2 cos T 4- t2 sin r =^ T =^p
r r O f =

As we have now T&quot; = cos2n-{-i sin 2rc= 1, it follows

that:
7T . ^-i .

, cos ?
---h t &amp;gt;, sin r = 0,* n ** n

r=0

hence : ^ sin r =0 (1)

&amp;gt; =o

and this equation is true without any exception, as there is

nothing imaginary on the right side. It follows also, that

we have in general:

,

cos r =0.
n

r- i o

Only when n = 0, the expression r_ 1
takes the form

~^

and has the value w, as we can easily see by differentiating it.

From the equations (1) and (2) several others, which

we shall make use of, can be easily deduced. For we find:

&amp;gt;, sin r ~ - cos r ^ - - = 4- ^. sin 2 &amp;gt; =0, (3)
* n n

&quot; ~* H
r=0 r=0

2n^ ^ - ?^= n in general (4)
w

= n in the exceptional case,
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finally:
r=. -1 / = -- 1

^n / 2?r\ 2
, XT 2?r

&amp;gt;, I sin r
)
=

i n ^ &amp;gt;, cos 2 r = 4 in general (o)* V tt /
r = ) = = in the exceptional case.

27. We will assume now:

X= cip cos p x -f- bp sin p x,

in which equation all integral numbers beginning with zero

must be successively put for p. If now q denotes a certain

number, we have:

X cos qx= \ap cos (p + 7) a? H- /
cos (p q} x

-+- \ bp sin ( jo 4- 9) or -+- -r bp sin (;? f/) x ,

and if we assign x successively the values 0, A^ 2 A to

(n 1) 4, where A = /*, and add the several resulting equa

tions, all terms on the right side will be zero according to

the equations (1) and (2) with the exception of the sum of

the terms of the cosine, in which
(p-\-&amp;lt;f)

A is equal to 2/c^r,

which will receive the factor n. But as A =
,

we have
n

for the remaining terms p-i-q = kn or p q kn, hence

p= q-i-kn or =-{~q-+-kn. Therefore denoting the value

of X, which corresponds to the value rA of a? by X rA ,
we

have :2HXrA COS qA= a -
v + A -h

-f- a a

But as X does not contain any coefficients whose index

is negative, we must take a_
2
= and get:

[&amp;lt;,-+-
a lt

~

Here we have to consider two particular cases. For

when q = 0, we have a_
?
= a

? , a_j = ct/j-fj
etc. hence:

and when w is an even number and q =^n, a^
q

is to be

omitted and a
(J

unites with a rt _,y etc., hence we have also in

this case:

5
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&quot;^XrA cos^nA= n [i n+3 w + ...], (8)

As : X sin q x= -J-
ap sin (p -h

&amp;lt;/)

.r 4- ,,
sin (p ?) :r

-h 6,, cos (p q) x ^ bp cos ( p -h r/) .r,

we find in a similar way:

2^ sin ^^= IT t b&amp;lt;

i

~
bn

i
+ ba+ i

~ b
*&quot; i ~*~ &amp;gt;2 &quot;+l -3- C9 ^^^ J

If we take now for n a sufficiently large number in pro

portion to the convergence of the series, so that we can ne

glect on the right side of the equations (6) to (9) all terms

except the first, we may determine by these equations the

coefficients of the cosines from q to q = \n and the co

efficients of the sines to q = \n 1
,

as a larger q gives

only a repetition of the former equations. The larger we

take M, the more accurate shall we find the values of the

coefficients whose index is small, while those of a high in

dex remain always inaccurate. For instance when n=l2
and q = 4, we have the equation :

2K cos 4 x= G (a 4 H- 8 + ),

hence the value of 4 will be incorrect by the quantity 8 ;

but if we had taken w = 24, this coefficient would be only

incorrect by aM .

From the above we find then the following equations:

2 ^?
ap= &amp;gt;. XrA cos rpA,

n *&quot;

V X,-A sin rp A,~
,-= o

with these exceptions, that for
/&amp;gt;

and p=\n we must take

L instead of the factor
n n

It is always of some advantage to take for n a number

divisible by 4, as in this case each quadrant is divided into

a certain number of parts and therefore the same values of

the sines and cosines return only with different signs. As
the cosines of angles, which are the complements to 360,
are the same, we can then take the sum of the terms, whose

indices are the complements to 360 and multiply it by the
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cosine
;
but the terms of the sine, whose indices are the com

plements to 360 must be subtracted from each other. If

we denote then the sum of two such quantities, for instance

XA -+-X(n -i)A by XA ,
and the difference XA X

ln _iM by XA ,

4-

we have:
2
r=$

cip
= ^ X,A cos rpA,

n *~ +
r =

2 ^j
bp
= ^j X, A sin rp A.

n

Again denoting here the sum or the difference of two

terms of the cosine, whose indices are the complements to

180 ft

, by X,A and X,.^, and the sum or difference of two
-1-4- 4-

terms of sines , whose indices are the complements to 180,

by Xr _, and Xr .4 ,
we have:

h

r=in

ap -= ^ X,ACOsrpA, when p is an even number, (10)
11

^j
i_

with the two exceptional cases mentioned before:

j^ X,-A cos rp J, when p is an odd number, (11)

2 x?
&/,
=

&amp;gt;j JTr^sinrp^, when /? is an even number, (12)

^, -X,^ sin rpA, when p is an odd number. (13)

r=l

If for instance n is equal to 12, we find:

TT *0
~~ -3 ~~

--6
~~ -9

a
i i \

X -f- X3 cos 30 -f- X6 cos 60 &amp;gt;

,

&quot;2

= ^ ^C 4- ^3 cos GO X6 cos 60
( + + ++ +4- +

etc.

&amp;gt;i

=
ff

\

X30 sin 30 -h^60 sin604-X90
j

,

(-4- - 4- -4-

etc.

5*
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28. If we wish to develop a periodical function up to a

certain multiple of the angle, it is necessary that as many
numerical values are known as we wish to determine coef

ficients. If then the given values are perfectly correct, we

shall find these coefficients as correct as theory admits, only

the less correct, the higher the index of the coefficient is

compared to the given number of values. But in case that

the values of the function are the result of observations
,

it

is advisable in order to eliminate the errors of observation

to use as many observations as possible, therefore to use

many more observations than are necessary for determining the

coefficients. In this case these equations should be treated

according to the method of least squares ;
but one can easily

see, that this method furnishes the same equations for deter

mining the coefficients as those given in No. 27. We see

therefore that the values obtained by this method are indeed

the most probable values.

For if the n values X
() ,
XA , X^ A ... X

(H-i)* are given,

we should have the following equations, supposing that the

function contains only the sines and cosines of the angle

itself: = X H- +,,
= XA + &quot;+ a

\
cos A -f-&isin^4,

= XZA-+- ~+~ i
cos 2A -f- 6

1
sin 2 A,

= X(-i)A-l-a -\-a t cos(n 1)^4+ 6, sin(n I) A,

and according to the method of least squares we should find

for the equations of the minimum, when [cos A] again de

notes the sum of all the cosines of A, from A= to A= n 1,

the following:
na -f- [cos A] a , -+- [sin A] b

t

- pG] = 0,

[cos^l]a -h[cos^
2
]a, -f- [sinA . cos A] b

, [XA cos A] = 0, (14)

[sin A] a -j- [cosA sin A] a, -+- [sin^L
2

] 6, [XA sin A] = 0.

But if we take into consideration the equations (3), (4)

and (5) in No. 26 we see, that these equations are reduced

to the following:

a, = ACQB A],

2
b

,
= [XA sin A],

n
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which entirely agree with those found in No. 27. What is

shown here for the three first coefficients, is of course true

for any number of them.

We can also find the probable error of an observation

and of a coefficient. For if [v i&amp;gt;]

is the sum of the squares

of the residual errors, which remain after substituting the

most probable values in the equations of condition, the pro

bable error of one observation is

= 0.67449
n- 3

and that of a

An example will be found in No. 6 of the seventh section.

Note. Consult Encke s Berliner Jahrbuch fiir 1857 pag. 334 and seq.

Leverrier gives in the Annales tie 1 Observatoire Imperial, Tome I. another

method for determining the coefficients, which is also given by Encke in the

Jahrbuch for 1860 in a different form.



SPHERICAL ASTRONOMY.

FIRST SECTION.

THE CELESTIAL SPHERE AND ITS DIURNAL MOTION.

In spherical astronomy we consider the positions of the

stars projected on the celestial sphere, referring them by

spherical co-ordinates to certain great circles of the sphere.

Spherical astronomy teaches then the means, to determine the

positions of the stars with respect to these great circles and

the positions of these circles themselves with respect to each

other. We must therefore first make ourselves acquainted
with these great circles, whose planes are the fundamental

planes of the several systems of co-ordinates and with the

means
, by which we may reduce the place of a heavenly

body given for one of these fundamental planes to another

system of co-ordinates.

Some of these co-ordinates are independent of the diurnal

motion of the sphere, but others are referred to planes which

do not participate in this motion. The places of the stars

therefore, when referred to one of the latter planes, must con

tinually change and it will be important to study these chan

ges and the phenomena produced by them. As the stars be

sides the diurnal motion common to all have also other, though
more slow motions, on account of which they change also

their positions with respect to those systems of co-ordinates,

which are independent of the diurnal motion, it is never suf

ficient, to know merely the place of a heavenly body lyt it

is also necessary to know the time, to which these places

correspond. We must therefore show, how the daily motion

either alone or combined with the motion of the sun is used

as a measure of time.
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I. THE SEVERAL SYSTEMS OF GREAT CIRCLES OF THE
CELESTIAL SPHERE.

1. The stars appear projected on the concave surface

of a sphere, which on account of the rotatory motion of the

earth on her axis appears to revolve around us in the op

posite direction namely from east to west. If we imagine

at any place on the surface of the earth a line drawn par

allel to the axis of the earth, it will generate on account of

the rotatory motion of the earth the surface of a cylinder,

whose base is the parallel
- circle of the place. But as the

distance of the stars may be regarded as infinite compared
to the diameter of the earth, this line remaining parallel to

itself will appear to pierce the celestial sphere always in the

same points as the axis of the earth. These points which

appear immoveable in the celestial sphere are called the Poles

of the celestial sphere or the Poles of the heavens, and the

one corresponding to the North-Pole of the earth, being there

fore visible in the northern hemisphere of the earth is called

the North-Pole of the celestial sphere, while the opposite is

called the South-Pole. If we now imagine a line parallel to

the equator of the earth, hence vertical to the former, it will

on account of the diurnal motion describe a plane, whose

intersection with the celestial sphere coincides with the great

circle, whose poles are the Poles of the heavens and which

is called the Equator. Any straight line making an angle
different from 90 &quot; with the axis of the earth generates the

surface of a cone, which intersects the celestial sphere in two

small circles, parallel to the equator, whose distance from

the poles is equal to the angle between the generating line

and the axis. Such small circles are called Parallel-circles.

A plane tangent to the surface of the earth at any place
intersects the celestial sphere in a great circle, which sepa
rates the visible from the invisible hemisphere and is called

the Horizon: The inclination of the axis to this plane is

equal to the .latitude of the place. The straight line tan

gent to the meridian of a place generates by the rotation of

the earth the surface of a cone, which intersects the ce

lestial sphere in two parallel circles, whose distance from the
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nearest pole is equal to the latitude of the place and as the plane
of the horizon is revolved in such a manner, that it remains

always tangent to this cone, these two parallel circles must
include two zones, of which the one around the visible pole
remains always above the horizon of the place, while the

other never rises above it. All other stars outside of these

zones rise or set and move from east to west in a parallel

circle making in general an oblique angle with the horizon. A
line vertical to the plane of the horizon points to the highest

point of the visible hemisphere, which is called the Zenith, while

the point directly opposite below the horizon is called the Na
dir. The point of intersection of this line with the celestial

sphere describes on account of the rotation a small circle,

whose distance from the pole is equal to the co- latitude of

the place; hence all stars which are at this distance from

the pole pass through the zenith of the place. As the line

vertical to the horizon as well as the one drawn parallel to

the axis of the earth are in the plane of the meridian of

the place, this plane intersects the celestial sphere in a great

circle, passing through the poles of the heavens and through
the zenith and nadir, which is also called the Meridian. Every
star passes through this plane twice during a revolution of the

sphere. The part of the meridian from the visible pole through
the zenith to the invisible pole corresponds to the meridian of

the place on the terrestrial sphere, while the other half cor

responds to the meridian of a place, whose longitude differs

180 or 12 hours from that of the former. When a star

passes over the first part of the Meridian, it is said to be

in its upper culmination, while when it passes over the se

cond part it is in its lower culmination. Hence only those

stars are visible at their upper culmination, whose distance

from the invisible pole is greater than the latitude of the

place, while only those can be seen at their lower culmi

nation, whose distance from the visible pole is less than the

latitude. The arc of the meridian between the pole and the

horizon is called the altitude of the pole and is equal to the

latitude of the place, while the arc between the equator and

the horizon is called the altitude of the equator. One is the

complement of the other to 90 degrees.
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2. In order to define the position of a star on the ce

lestial sphere, we make use of spherical co-ordinates. We
imagine a great circle drawn through the star and the zenith

and hence vertical to the horizon. If we now take the point

of intersection of this great circle with the horizon and count

the number of degrees from this point upwards to the star

and also the number of degrees of the horizon from this point

to the meridian, the position of the star is defined. The great

circle passing through the star and the zenith is called the

vertical -circle of the star; the arc of this circle between the

horizon and the star is called the altitude, while the arc between

the vertical -circle and the meridian is the azimuth of the star.

The latter angle is reckoned from the point South through

West, North etc. from to 360. Instead of the altitude

of a star its zenith-distance is often used, which is the arc

of the vertical circle between the star and the zenith, hence

equal to the complement of the altitude. Small circles whose

plane is parallel to the horizon are called almucantars.

Instead of using spherical co-ordinates we may also de

fine the position of a star by rectangular co-ordinates, refer

red to a system of axes, of which that of z is vertical to

the plane of the horizon, while the axes of y and x are situa

ted in its plane, the axis of x being directed to the origin

of the azimuths, and the positive axis of y towards the azi

muth 90 or the point West. Denoting the azimuth by A,
the altitude by h, we have:

x == cos h cos A
, y = cos h sin A

,
z = sin h.

Note. For observing these spherical co-ordinates an instrument perfectly

corresponding to them is used, the altitude- and azimuth -instrument. This

consists in its essential parts of a horizontal divided circle, resting on three

screws, by which it can be levelled with the aid of a spirit-level. This circle

represents the plane of the horizon. In its centre stands a vertical column,

which therefore points to the zenith, supporting another circle, which is par

allel to the column and hence vertical to the horizon. Round the centre of

this second circle a telescope is moving connected with an index, by which

the direction of the telescope can be measured. The vertical column, which

moves with the vertical circle and the telescope, carries around with it an

other index, by which one can read its position on &quot;the horizontal circle. If

then the points of the two circles, corresponding to the zenith and the point

South, are known, the azimuth and zenith-distance of any star towards which

the instrument is directed, may be determined.
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Besides this instrument there are others by which one can observe only
altitudes. These are called altimeters, while instruments, by which azimuths

alone are measured, are called theodolites.

3. The azimuth and the altitude of a star change on

account of the rotation of the earth and are also at the same

instant different for different places on the earth. But as it

is necessary for certain purposes to give the places of the

stars by co-ordinates which are the same for different places
and do not depend on the diurnal motion, we must refer the

stars to some great circles, which remain fixed in the ce

lestial sphere. If we lay a great circle through the pole and

the star, the arc contained between the star and the equator
is called the declination and the arc between the star and

the pole the polar-distance of the star. The great circle itself

is called the declination -circle of the star. The declination

is positive, when the star is north of the equator and ne

gative, when it is south of the equator. The declination

and the polar -distance are the complements of each other.

They correspond to the altitude and the zenith-distance in

the first system of co-ordinates.

The arc of the equator between the declination-circle of

the star and the meridian, or the angle at the pole measured

by it, is called the hour-angle of the star. It is used as the

second co-ordinate and is reckoned in the direction of the

apparent motion of the sphere from east to west from

to 360.
The declination -circles correspond to the meridians on

the terrestrial globe and it is evident, that when a star is

on the meridian of a place, it has at the same moment at a

place, whose longitude east is equal to &, the hour -angle k

and in general, when at a certain place a star has the hour-

angle ,
it has at the same instant at another place, whose

longitude is k (positive when east, negative when west) the

hour -
angle t -j- k .

Instead of using the two spherical co-ordinates, the de

clination and the hour-angle, we may again introduce rectan

gular co-ordinates if we refer the place of the star to three

axes, of which the positive axis of z is directed to the North-

pole, while the axes of x and y are situated in the plane of
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the equator, the positive axis of x being directed to the me

ridian or the origin of the hour -angles while the positive

axis of y is directed towards the hour-angle 90. Denoting

then the declination by d, the hour-angle by ,
we have:

x = cos cos ?, y = cos sin t, z = sin S.

Note. Corresponding to this system of co-ordinates we have a second

class of instruments, which are called parallactic instruments or equatorials.

Here the circle, which in the first class of instruments is parallel to the

horizon, is parallel to the equator, so that the vertical column is parallel to

the axis of the earth. The circle parallel to this column represents therefore

a declination circle. If the points of the circles, corresponding to the me

ridian, being the origin of the hour- angles, and the pole, are known, the

hour -angle and the declination of a star may be determined by such an in

strument.

4. In this latter system of co-ordinates one of them,

the declination, does not change while the hour- angle in

creases proportional to the time and differs in the same mo
ment at different places on the earth according to the dif

ference of longitude. In order to have also the second co

ordinate invariable, one has chosen a fixed point of the equator

as origin, namely the point in which the equator is intersected

by the great circle, which the centre of the sun seen from

the centre of the earth appears to describe among the stars.

This great circle is called the ecliptic and its inclination to

the equator, which is about 23 degrees, the obliquity of the

ecliptic. The points of intersection between equator and eclip

tic are called the points of the equinoxes, one that of the

vernal the other that of the autumnal equinox, because day
and night are of equal length all over the earth, when the

sun on the 21 st of March and on the 23 d of September reaches

those points *). The points of the ecliptic at the distance of

90 degrees from the points of the equinoxes are called sol

stitial points.

The new co-ordinate, which is reckoned in the equator
from the point of the vernal equinox, is called the right-

ascension of the star. It is reckoned from to 360 from

) For as the sun is then on the equator, and as equator and horizon

divide each other into equal parts, the sun must remain as long below as

above the horizon,
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west to east or opposite to the direction of the diurnal motion.

Instead of using the spherical co-ordinates, declination and

right-ascension, we can again introduce rectangular co-ordi

nates, referring the place of the star to three vertical axes,

of which the positive axis of z is directed towards the North-

pole, while the axes of x and y are situated in the plane of

the equator, the positive axis of x being directed towards

the origin of the right-ascensions, the positive axis of y to the

point, whose right-ascension is 90 . Denoting then the right-

ascension by a
,
we have :

x&quot;
= cos S cos ,

y&quot;

= cos sin
,

z&quot;
= sin d.

The co-ordinates a and d are constant for any star. In

order to find from them the place of a star on the apparent
celestial sphere at any moment, it is necessary to know the

position of the point of the vernal equinox with regard to

the meridian of the place at that moment, or the hour-angle
of the point of the equinox, which is called the sidereal time,

while the time of the revolution of the celestial sphere is

called a sidereal day and is divided into 24 sidereal hours.

It is Oh sidereal time at any place or the sidereal day com
mences when the point of the vernal equinox crosses the

meridian, it is P when its hour-angle is 15 or P etc. For

this reason the equator is divided not only in 360 but also

into 24 hours. Denoting the sidereal time by 0, we have

always: &amp;lt;

=
,

hence /= a.

If therefore for instance the right-ascension of a star is

190 20 and the sidereal time is 4h
,
we find t = 229 40 or

130 20 east.

From the equation for t follows = a when t = 0.

Therefore every star comes in the meridian or is culminating
at the sidereal time equal to its right-ascension expressed in

time. Hence when the right -ascension of a star which is

culminating, is known, the sidereal time at that instant is

also known by it*).

*) The problem to convert an arc into time occurs very often.

If we have to convert an arc into time, we must multiply by 15 and

multiply the remainder of the degrees, minutes and seconds by 4, in order to

convert them into minutes and seconds of time.
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If the sidereal time at any place is 0, at the same in

stant the sidereal time at another place, whose difference of

longitude is /?,
must be -f- &, where k is to be taken po

sitive or negative if the second place is East or West of the

first place.

Note. The co-ordinates of the third system can be found by instruments

of the second class, if the sidereal time is known. In one case these co

ordinates may be even found by instruments of the first class
, namely when

the star is crossing the meridian, for then the right -ascension is determined

by the time of the meridian -passage and the declination by observing the

meridian-altitude of the star, if the latitude of the place is known. For such

observations a meridian-circle is used. If such an instrument is not used for

measuring altitudes but merely for observing the times of the meridian -pas

sages of the stars, if it is therefore a mere azimuth -instrument mounted in

the meridian, it is called a transit- instrument. If we observe by such an

instrument and a good sidereal clock the times of the meridian -passages we

get thus the differences of the right -ascensions of the stars. But as the

point from which the right-ascensions are reckoned cannot be observed itself,

it is more difficult, to find the absolute right-ascensions of the stars.

5. Besides these systems of co-ordinates a fourth is

used, whose fundamental plane is the ecliptic. Great circles

which pass through the poles of the ecliptic and therefore

are vertical to it, are called circles of latitude and the arc

of such a circle between the star and the ecliptic is called

the latitude of the star. It is positive or negative if the star

is North or South of the ecliptic. The other co-ordinate,
the longitude, is reckoned in the ecliptic and is the arc be

tween the circle of latitude of the star and the point of the

vernal equinox. It is reckoned from to 360 in the same

direction as the right -ascension or contrary to the diurnal

Thus we have 239 18 46&quot;. 75
= 15 h

,
4 X 14 + 1 minutes, 4x34-3 seconds and s

. 117
= 15 h 57m 15s. 117.

If on the contrary we have to convert a quantity expressed in time into

an arc, we must multiply the hours by 15, but divide the minutes and se

conds by 4 in order to convert them into degrees and minutes of arc. The
remainders must again be multiplied by 15.

Thus we have 15 h 57m 15 s
. 117

= 225 -h 14 degrees, 15 -f- 3 minutes and 46.75 seconds

= 239 18 46&quot;. 75.
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motion of the celestial sphere *). The circle of latitude whose

longitude is zero, is called the colure of the equinoxes and

that, whose longitude is 90, is the colure of the solstices.

The arc of this colure between the equator and the ecliptic,

likewise the arc between the pole of the equator and that

of the ecliptic is equal to the obliquity of the ecliptic.

The longitude shall always be denoted by A, the latitude

by ft and the obliquity of the ecliptic by s.

If we express again the spherical co-ordinates ft and A

by rectangular co-ordinates, referred to three axes vertical

to each other, of which the positive axis of z is vertical to

the ecliptic and directed to the north -pole of it, while the

axes of x and y are situated in the plane of the ecliptic, the

positive axis of x being directed to the point of the vernal

equinox, the positive axis of y to the 90th

degree of longitude,
we have:

x &quot; = cos ft cos I
, y

&quot;= cos /3 sin ^,, z&quot;= sin ft.

These co-ordinates are never found by direct observations,
but are only deduced by computation from the other systems
of co-ordinates.

Note. As the motion of the sun is merely apparent and the earth really

moving round the sun, it is expedient, to define the meaning of the circles

introduced above also for this case. The centre of the earth moves round

the sun in a plane, which passes through the centre of the sun and inter

sects the celestial sphere in a great circle called the ecliptic. Hence the lon

gitude of the earth seen from the sun differs always 180 from that of the

sun seen from the earth. The axis of the earth makes an angle of 66-5-

with this plane and as it remains parallel while the earth is revolving round

the sun it describes in the course of a year the surface of an oblique cy

linder, whose base is the orbit of the earth. But on account of the infinite

distance of the celestial sphere the axis appears in these different positions

to intersect the sphere in the same two points, whose distance from the poles

of the ecliptic is 23^ . Likewise the equator is carried around the sun par
allel to itself and the line of intersection between the equator and the plane
of the ecliptic, although remaining always parallel, changes its position in

the course of the year by the entire diameter of the earth s orbit. But

the intersections of the equator of the earth with the celestial sphere in all the

different positions to which it is carried appear to coincide on account of the

*) The longitudes of the stars are often given in signs, each of which

has 30. Thus the longitude 6 signs 15 degrees is = 195.
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infinite distance of the stars with the great circle, whose poles are the poles

of the heavens and all the lines of intersections between the plane of the

equator and that of the ecliptic are directed towards the point of intersection

between the two great circles of the equator and the ecliptic.

II. THE TRANSFORMATION OF THE DIFFERENT SYSTEMS OF

CO-ORDINATES.

6. In order to find from the azimuth and altitude of

a star its declination and hour -angle, we must revolve the

axis of z in the first system of co-ordinates in the plane of

x and z from the positive side of the axis of x to the positive

side of the axis of z through the angle 90
(p (where cp

designates the latitude), as the axes of y of both systems

coincide. We have therefore according to formula (la) for

the transformation of co-ordinates, or according to the for

mulae of spherical trigonometry in the triangle formed by the

zenith, the pole and the star*):

sin 8= sin
&amp;lt;f&amp;gt;

sin k cos
&amp;lt;p

cos h cos A
cos sin t= cos h sin A
cos 8 cos t = sin h cos

y&amp;gt;

-f- cos h sin^P cos A.

Iii order to render the formulae more convenient for lo

garithmic computation, we will put:
sin h = m cos M

cos h cos A= m sin M,

and find then:
sin 8= m sin

(&amp;lt;p
M&quot;)

cos 8 sin t = cos h sin A
cos 8 cos t= m cos

(y&amp;gt; M}.

These formulae give the unknown quantities without any

ambiguity. For as all parts are found by the sine and co

sine, there can be no doubt about the quadrant, in which they

lie, if proper attention is paid to the signs. The auxiliary

angles, which are introduced for the transformation of such

formulae, have always a geometrical meaning, which- in each

case may be easily discovered. For the geometrical con

struction amounts to this, that the oblique spherical triangle

*) The three sides of this triangle are respectively 90 /?, 90 8 and

90
(f and the opposite angles t, 180 A and the angle at the star.
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is either divided into two right-angled triangles or by the

addition of a right-angled triangle is transformed into one.

In the present case we must draw an arc of a great circle

from the star perpendicular to the opposite side 90 y,
and as we have:

tang h = cos A cotang 3/,

it follows from the third of the formulae (10) in No. 8 of

the introduction, that M is the arc between the zenith and the

perpendicular arc, while m according to the first of the for

mulae (10) is the cosine of this perpendicular arc itself, since

we have:

sin h= cos P cos 3/,

if we denote the perpendicular arc by P.

We will suppose, that we have given:

&amp;lt;p

= 52 30 16&quot;. 0, A =16 11 44&quot;. and A = 202 4 15&quot;. 5.

Then we have to make the following computation:

cos ^4 9.9669481,, m sin 3/9.9493620.

cos h 9.9824139 m cos 3/9.4454744

sin A 9.5749045,, 3/= 7^35*54^61
sin 3/9.9796542,,

&amp;lt;p

3/=1256 10&quot;.61

sin (y 3/) 9.9128171 cos S sin t 9.5573184,, sin S 9.8825249

m 9.9697078 cos &amp;lt;? cos * 9.7294114,. cos S 9.8104999 _
cos

(&amp;lt;p
3/) 9.7597036,, t= 2 1 3 56 2.22 3=+49 43 46.~00

cos* 9.9189115..

7. More frequently occurs the reverse problem, to con

vert the hour -angle and declination of a star into its azi

muth and altitude. In this case we have again according to

formula (1) for the transformation of co-ordinates:

sin h = sin
&amp;lt;p

sin 8 -+- cos
&amp;lt;p

cos S cos t

cos h sinA= cos S sin t

cos h cos A == cos (p sin S -4- sin
y&amp;gt;

cos S cos t,

which may be reduced to a more convenient form by introdu

cing an auxiliary angle. For if we take :

cos S cos t= m cos 3/

sin S = m sin 3/

we have:
sin h= m cos

(&amp;lt;p 3/)

cos h sin A= cos sin t

cos h cosA= in sin
(&amp;lt;p 3/)
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cos 3/tang t

or : tangA = -
sin (cp

M)

cos A
tang h = *).

tang (cp M)
When the zenith distance alone is to be found, the fol

lowing formulae are convenient. From the first formula for

sin h we find :

QOS z = cos (cp 8) 2 cos cp cos 8 sin
2

,

or : sin T 2
2 = sin^ (cp $)

2
-f-cos cp cos 8 sin /

2
.

If we take now :

n = sin \ (cp
S)

m = YCOS cp cos 8,

we have : sin j z* = n 2
fH- , sin j 1

1
* \

or taking
-- sin t = tang A

sin 4 z=
COS A

If sin A. should be greater than cos A, it is more con

venient to use the following formula:

m
sin .T z = , sin ^ t.

sin A

In the formula by which n is found, we must use
(p ,

if the star culminates south of the zenith
,

but ti
qp

if the

star culminates north of the zenith, as will be afterwards

shown.

Applying Gauss s formulae to the triangle between the

star, the zenith and the pole, and designating the angle at

the star by /?, we find:

cos \ z . sin 4 (A p) = sin
7^

t . sin (cp -f- 8}

cos j z . COSY (-4 p) = cos ,y . cos T (77 $)

sin T 2 . sin | (^4 -f- p) = sin ^ Z . cos I (9? H- 8)

sin 4 2 . cos^- (A H- /?)
= cos 7 z . sin -^ (9? $).

If the azimuth should be reckoned from the point North,
as it is done sometimes for the polar star, we must introduce

180 A instead of A in these formulae and obtain now:

cos T z . sin { (p-\- A)= cos^ t . cos^j (8 cp)

cos 5 z . COSTJ ( p -f- A) = sin 5 t . sin
(S-i-cp&quot;)

sin \ z . sin A-
(/&amp;gt; -4) = cos \ t . sin | (8 cp)

sin
.]
z . cos

15 (p A)= sin -5
t . cos A ($-4-9?).

*) As the azimuth is always on the same side of the meridian with the

hour angle, these last formulae leave no doubt as to the quadrant in which it lies.

6
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Frequently the case occurs, that these computations must

be made very often for the same latitude, when it is desirable

to construct tables for facilitating these computations *). In

this case the following transformation may be used. We had :

(a) sin h sin y sin -f- cos
cp cos cos t

(6) cos h sin A = cos S sin t

(c) cos h cos A = cos
y&amp;gt;

sin 8 -+- sin
cp cos cos /.

If we designate now by A and d those values of A

and #, which substituted in the above equation make h equal

to zero, we have :

(d)
= sin (p sin $ -f- cos

9? cos S cos t

(e) sin y4 .= cos $ sin 2

(/) cos A o
= cos

90
sin $ -j- sin 9? cos $ (i

cos if.

Multiplying now
(/&quot;) by cos

cf
and subtracting from it

equation (rf) after having multiplied it by sin
&amp;lt;y,

further mul

tiplying equation (/*) by sin
&amp;lt;f

and adding to it equation (c?),

after multiplying it by cos .7, we find:

cos A Q cos
95
= sin S .

cos A sin 95
= cos $ cos t

sin ^4 = cos ^ sin /.

Taking then:
sin

(p
= sin y cos B

cos
9? cos t = siny sin Z?

cos f sin = cos y,

we find from the equation (d) the following:
= sin y sin

(&amp;lt;?
-f- B)

or:
&amp;lt;?&amp;lt;,

= -
and from (a):

sin A = sin y sin ($ -f- JB\

Then subtracting from the product of equations (6) and

(/&quot;)
the product of the equations (c) and (e) we get:

cos h sin (A A )
= cos

&amp;lt;p

sin sin (d ^ )
= cos y sin (S -+- B}

and likewise adding to the product of the equations (c) and

(/&quot;)
the product of the equations (6) and (e) and that of the

equations (a) and (d):

cos h cos (yl ^1 )
= cos $ cos &amp;lt;? sin t

1
-+- sin sin t&amp;gt;&quot; + cos S cos $ cos i

2

*) For instance if one has to set an altitude- and azimuth instrument

at objects, whose place is given by their right ascension and declination. Then

one must first compute the hour angle from the right ascension and the side

real time.
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Hence the complete system of formulae is as follows:

sin
cp
= sin y cos B \

cosy cos t= sin y sin B (1)

cos fp sin t = cos y

sin B = cos -4 cos gp
\

cos 5 cos = cos A sin y (2)

cos .B sin = sin A n

sin A= sin y sin ($ -f- B) \

cos h sin (-4 ^4 )
= cos y sin ($ -f- B) )

These formulae by taking D = sin y ,
C = cos / and

,4 ^4 = u are changed into the following:

tang B = cotg cp cos

tang A = sin y tang t

sin 7i= &amp;gt; sin (B -f- 5)

tang u= C tan

where D and C are the sine and cosine of an angle ; ,
which

is found from the following equation *) :

cotang y= sin B tang t= cotang cp sin A .

These are the formulae given by Gauss in ,,Schumacher s

Hulfstafeln herausgegeben von Warnstorff pag. 135.&quot; If now

the quantities Z&amp;gt;, C, B and A
(}

are brought into tables whose

argument is f, the computation of the altitude and the azi

muth from the hour angle and the declination is reduced to

the computation of the following simple formulae :

sin/i= Dsin(B -h 8)

tang u= C tang (B 4- S)

A = A -\- u.

Such tables for the latitude of the observatory at Altona

have been published in WarnstorfFs collection of tables quoted

above. It is of course only necessary to extend these tables

from t = to t = 6 h
. For it follows from the equation

tang A
()

= sin (f tang /,
that A

()
lies always in the same qua

drant as f, that therefore to the hour angle 12 1

t belongs the

azimuth 180 A. Furthermore it follows from the equations

for B, that this angle becomes negative, when t ;&amp;gt; 6 h or ^&amp;gt; 90
,

that therefore if the hour angle is 12 h
t the value B must

be used. The quantities

*) For we have according to the formulae (2)

cotang &amp;lt;p

sin A = sin B tang t.
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C= cosy smt and D = J/sin
y&amp;gt;

2 -

are not changed if 180 t instead of t is substituted in these

expressions. When t lies between 12 h and 24 1

,
the compu

tation must be carried through with the complement of t to

24 h and afterwards instead of the resulting value of A its

complement to 360&quot; must be taken.

It is easy to find the geometrical meaning of the aux

iliary angles. As r) represents that value of f), which sub

stituted in the first of the original equations makes it equal
to zero, &amp;lt;yo is the declination of that point, in which the de

clination circle of the star intersects the horizon; likewise is

Fig. i. A the azimuth of this point. Further

more as we have B= J
,
B -j- ti

is the arc S F Fig. 1
*
) of the decli

nation circle extended to the horizon.

In the right angled triangle FOK^
which is formed by the horizon, the

equator and the side FK= B, we have

according to the sixth of the formu

lae (10) of the introduction, because

the angle at is equal to 90
cf

:

sin (p
= cos B sin FK.

But as we have ulso sin
(f
= D cos #, we see, that D is

the sine of the angle OFK. therefore C its cosine. At lastO 7

we easily see that FH is equal to A and FG equal to u.

We can iind therefore the above formulae from the three

right angled triangles PFH, OFK and SFG. The first tri

angle gives :

tang A = tang t sin P,

the second:

tang B = cotang cp cos t

cotang y= sin B tang t= cotg &amp;lt;f&amp;gt;

sinA ,

and the third:

sin h= sin y sin (B -+- S)

tang u= cos y tang (B -+- 8).

The same auxiliary quantities may be used for solving

the inverse problem, given in No. 6, to find the hour angle

*) In this figure P is the pole, Z the zenith, OH the horizon, A the

equator, and S the star.
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and the declination of a star from its altitude and azimuth.

For we have in the right angled triangle SKL, designating
LG by #, LK by ^&amp;lt;,

AL by A H and the cosine and sine of

the angle SLK by C and D:

C tang (h B] = tang u

D sin (h )
= sin #

and t= A w,

where now:
tang .

= cotang (p
cos .4

tang A = sin y tang ^l

and where D and C are the sine and cosine of an angle ;-,

which is found by the equation:

cotang y= sin B tang A.

We use therefore for computing the auxiliary quantities

the same formulae as before only with this difference, that

in these A occurs in the place of t; we can use therefore

also the same tables as before, taking as argument the azi

muth converted into time.

8. The cotangent of the angle ; ,
which Gauss denotes

by .E, can be used to compute the angle at the star in the

triangle between the pole, the zenith and the star. This angle

between the vertical circle and the declination circle, which

is called the parallactic angle is often made use of. If we

have tables, such as spoken of before, which give also the

angle E, we find the parallactic angle, which shall be de

noted by p, from the following simple formula:

as is easily seen, if the fifth of the formulae (10) in No. 8

of the introduction is applied to the right angled triangle SGF
Fig. 1. But if one has no such tables, the following formulae

which are easily deduced from the triangle SP Z can be used:

cos h sin p= cos
&amp;lt;p

sin t

cos h cos p= cos sin
&amp;lt;p

sin 8 cos (p cos t,

or taking:
cos (p cos t= n sin N

sin
(f
= n cos N,

the following formulae, which are more convenient for loga
rithmic computation :

cos h sin p= cos (p sin t

cos h cos p= n cos (-+-N).
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The parallactic angle is used, if we wish to compute
the effect which small increments of the azimuth and al

titude produce in the declination and the hour angle. For

we have, applying to the triangle between the pole, the ze

nith and the star the first and third of the formulae (9) in

No. 11 of the introduction:

dS= cos p dh H- cos t dfp -h cos /* sin p . dA
cos Sdt = sin/&amp;gt;c?A+ sin t sin S .dcp -f- cos h cos p. dA

and likewise:

dh= cos pdS cos A d(p cos S sin/) . dt

cos lidA= sin pd S sin A sin hdcp -+- cos 8 cospdt.

9. In order to convert the right ascension and decli

nation of a star into its latitude and longitude, we must re

volve the axis ofss&quot; *) in the plane of
y&quot;

z&quot; through the angle
s equal to the obliquity of the ecliptic in the direction from

the positive axis of
y&quot;

towards the positive axis of z&quot;. As the

axes of x&quot; and x &quot;

of the two systems coincide, we find ac

cording to the formulae (1 a) in No. 1 of the introduction:

cos /? cos A= cos S cos

cos j3 sin A= cos 8 sin a cos e -f- sin 8 sin e

sin p= cos 8 sin a sin f H- sin 8 cos f .

These formulae may be also derived from the triangle

between the pole of the equator, the pole of the ecliptic and

the star, whose three sides are 90 d, 90 ft and s and

the opposite angles respectively 90 A, 90 -j- a and the

angle at the star.

In order to render these formulae convenient for loga
rithmic computation, we introduce the following auxiliary

quantities :

M sin N= sin 8
TUT AT S&amp;gt; (&)M cos zV = cos o sin a,

by which the three original equations are changed into the

following:
cos /3 cos A= cos 8 cos a

cos /? sin A= Mcos (N e)

sin {3
= M sin (N s ),

or if we find all quantities by their tangents and substitute

for M its value cos 8 sin

cos N

*) See No. 4 of this Section.
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we get as final equations :

tang
tang A =

sin

cos (N e)=! &quot;

tanga

tang ft
= tang (N e) sin I

The original formulae give us a and d without any am

biguity; but if we use the formulae (6) we may be in doubt

as to the quadrant in which we must take /,. However it

follows from the equation:

cos ft cos k= cos 3 cos a

that I must be taken in that quadrant, which corresponds to

the sign of tang I and at the same time satisfies the con

dition, that cos a and cos h must have the same sign.

As a check of the computation the following equation

may be used:

cos (N e) _ cos {3 sin h .

cos N cos S sin

which we find by dividing the two equations:

cos ft sin /t= Mcos (N e)

cos sin a= Af cos .2V.

The geometrical meaning of the auxiliary angles is easily

found. A7

is the angle which the great circle passing through

the star and the point of the vernal equinox makes with the

equator, and M is the sine of this arc.

Example. If we have:

fl= 6 33 29&quot;. 30 S= 16 22 35&quot;. 45

e= 23 27 31&quot;. 72,

the computation of the formulae (6) and (c) stands as follows:

cos 9 . 9820131 tang 9 . 0605604

tang&amp;lt;?
9.4681562,, - 9 . 0292017,,

cos N
sin a 9

._057709_3
1= 359 17 43&quot;. 91

jV= 68 45 4 1&quot;. 88 , R . Q

27 31 72 tang (#-)!. 4114653

sin^ S.OS97293*
- .= - 92 13 13 . 60 -1^8^37
cos(,Y- )8.5882086n

CoS ^= 9 . 9791948
cos N 9 . 5590069

cos ft sin;,= 8 .0689241.

cos S sin a= 9. 0397224

9 . 0292017* ^^ ^
TT-K

,ITY
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If we apply Gauss s formulae to the triangle between

the pole of the equator, the pole of the ecliptic and the star

and denote the angle at the star by 90 E, we find:

sin (45 | ft) sin i (E A) cos (45+4-) sin [45 (e-h&amp;lt;?)]

sin (45 4/?) cos^ (E X) = sin (45 +|J cos [45 I (s )]

cos(45 $ ft) sin \ (JE-M) = sin (45 -!-) sin [45 $( )]

cos (45 j/5) cos I (JF-|-4) = cos (45 + a) cos [45 ?(e+ 8)].

These formulae are especially convenient, if we wish to find

besides ft and A also the angle 90 E.

Note. Encke has given in the Berlin Jahrbuch for 1831 tables, which

are very convenient for an approximate computation of the longitude and la

titude from the right ascension and declination. The formulae on which they
are based are deduced by the same transformation of the three fundamental

equations in No. 9 as that used in No. 7 of this section for equations of a

similar form. More accurate tables have been given in the Jahrbuch for 1856.

10. The formulae for the inverse problem, to convert

the longitude and latitude of a star into its right ascension

and declination, are similar. We get in this case from the

formulae (1) for the transformation of co-ordinates or also

from the same spherical triangle as before:

cos -d cos a= cos ft cos /

cos 8 sin a= cos ft sin A cos E sin ft sin s

sin S= cos ft sin A sin e -+- sin ft cos e.

We can find these equations also by exchanging in the

three original equations in No. 9 ft and I for $ and a and

conversely and taking the angle s negative. In the same way
we can deduce from the formulae (//) the following:

sn

cos (.TV -he)
tang =-__ tang I

tang 8= tang (N-+- s) sin a

and from (r) the following formula, which may be used as

a check:

cos (N -{- s~) _ cos S sin a

cos N cos ft sin I

Here is N the angle, which the great circle passing through
the star and the point of the vernal equinox makes with

the ecliptic.

Finally Gauss s equations give in this case:
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sin (45 \ } sin \ (E-\-a] = sin (45 + 4- A) sin
[45&quot; (e +/?)]

sin (45 3) cosOE-H) = cos(45 -MA) cos [45 (,#)]
cos (45 ? &amp;lt;?)

sin 4 (E a] cos (45 -h \ A) sin [45 (e /?)]

cos (45 4&amp;lt;?)
cos 4 (_) = sin (45 -H A) cos [45

-

(s-\-ft)].

2Vote. As the sun is always in the ecliptic, the formulae become more

simple in this case. If we designate the longitude of the sun by L, its right

ascension and declination by A and D, we find:

tang A = tang L cos e

sin I)= sin L sin e

or : tang D = tang e sin ^4.

11. The angle at the star in the triangle between the

pole of the equator, the pole of the ecliptic and the star,

or the angle at the star between its circle of declination and

its circle of latitude, is found at the same time with A and
/?,

if Gauss s equations are used for computing them, as, de

noting this angle by r\ ,
we have

&amp;gt;/

= 90 E. But if we

wish to find this angle without computing those formulae,

we can obtain it from the following equations:

cos ft sin 77
= cos a. sin e

cos ft cos 77
= cos e cos S -+- sin e sin sin a

or:
cos S sin 77

= cos A sin e

cos S cos i]
= cos e cos ft sin E sin ft sin A,

or taking:
cos = m cos M

sin f sin = m sin -/If

or:

cos s= n cos 2V

sin sin A = n sin N
we may find it from the equations :

cos ft sin rj
= cos a sin

cos ft cos 77
= w cos (M 8)

or:

cos sin 77
= cos A sin

cos S cos 77
= n cos (2V -f- /?).

The angle tj is used to find the effect, which small in

crements of A and
/&amp;gt;

have on a and &amp;lt;) and conversely. For

we get by applying the first and third of the formulae (11)

in No. 9 of the introduction to the triangle used before:

dft= cos
77
d cos S sin

77
. da sin A de

cos ft o?A= sin
77
d 8 -*- cos $ cos 77

. da -+- cos A sin ft de,

and also:

dS= cosr]dft-\-cosftsmrj.dh-t-smad
cos $o? = sin rjdft -+- cos/? cos

77
. c?A cos sin $ . c/.
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Note. The supposition made above that the centre of the sun is always

moving in the ecliptic is not rigidly true, as the sun on account of the per

turbations produced by the planets has generally a small latitude either north

or south, which however never exceeds one second of arc. Having therefore

computed right ascension and declination by the formulae given in the note

to No. 10, we must correct them still for this latitude. If we designate it

by dB, we have the differential formulae :

&amp;lt;M
= - sin

y,. dB ,

COS U
dJj= cos i] . dB,

or if we substitute the values of sin r] and cos 77 from the formulae for

cos ft cos 77 and cos S cos 77 after having taken /?=0, we find:

. cos D dA = cos A sin e . dB,

...
cos D

12. The formulae for converting altitudes and azimuths

into longitudes and latitudes may be briefly stated, as they
are not made use of.

We have first the co-ordinates with respect to the plane
of the horizon:

x= cos A cos h,

y = sin A cos h,

z = sin h.

If we revolve the axis of x in the plane of x and z through
the angle 90 (f

in the direction towards the positive side

of the axis of 3, we find the new co-ordinates:

x = x sin
(f -\- z cos

(jp,

y =y.
z = z sin (p

x cos
cp.

If we then revolve the axis of x in the plane of x and

t/, which is the plane of the equator, through the angle &,

so that the axis of x is directed towards the point of the

vernal equinox, we find the following formulae, observing that

the positive side of
y&quot;

must be directed towards a point whose

right ascension is 90&quot; and that the right ascensions and hour

angles are reckoned in an opposite direction:

x&quot;
= x cos & -r- y sin

y&quot;

= y COS x sill

z&quot;
= z

If we finally revolve the axis of
y&quot;

in the plane of
y&quot;

and z&quot; through the angle e in the direction towards the pos

itive side of the axis of
a&quot;,

we find:
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y&quot;

!=
y&quot;

cos -4- z&quot; sin s

z
&quot; = y sin s -+- z cos

,

and as we also have:

x
&quot;= cos p cos I

y&quot;

!= cos fi sin k

z
&quot; = sln/3,

we can express A and /? directly by 4, ft, &amp;lt;f ,
and e by

eliminating x
, y ,

as well as
a?&quot;, #&quot;,

a&quot;.

III. THE DIURNAL MOTION AS A MEASURE OF TIME.

SIDEREAL, APPARENT AND MEAN SOLAR TIME.

13. The diurnal revolution of the celestial sphere or

rather that of the earth on her axis being perfectly uniform,

it serves as a measure of time. The time of an entire revo

lution of the earth on its axis or the time between two suc

cessive culminations of the same fixed point of the celestial

sphere, is called a sidereal day. It is reckoned from the mo
ment the point of the vernal equinox is crossing the meri

dian, when it is Oh sidereal time. Likewise it is l
h
,
2 h

,
3 h etc.

sidereal time, when the hour angle of the point of the equinox
is l

h
,

2 h
,

3 h
etc. or when the point of the equator whose

right ascension is l
h
,

2h
,

3 h etc. or 15
, 30&quot;,

45 etc. is on

the meridian.

We shall see hereafter, that the two points of the equi

noxes are not fixed points of the celestial sphere, but that

they are moving though slowly on the ecliptic. This motion

is rather the result of two motions, of which one is propor
tional to the time and therefore unites with the diurnal mo
tion of the sphere, while the other is periodical. This latter

motion has the effect, that the hour angle of the point of

the vernal equinox does not increase uniformly, hence that

sidereal time is not strictly uniform. But this want of uni

formity is exceedingly small as it amounts during a period of

nineteen years only to =1= 1
s

. .

14. The sun being on the 21 th of March at the vernal

equinox it crosses the meridian on that day at nearly Oh
si-



92

dereal time. But at it moves in the ecliptic and is at the

point of the autumnal equinox on the 23 d of September, hav

ing the right ascension I2 h
,

it culminates on this day at

nearly 12 1 sidereal time. Thus the time of the culmination

of the sun moves in the course of a year through all hours

of a sidereal day and on account of this inconvenience the

sidereal time would not suit the purposes of society, hence

the motion of the sun is used as the measure of civil time.

The hour angle of the sun is called the apparent solar time

and the time between two successive culminations of the sun

an apparent solar day. It is O h
apparent time when the

centre of the sun passes over the meridian. But as the right

ascension of the sun does not increase uniformly, this time

is also not uniform. There are two causes which produce
this variable increase of the sun s right ascension, namely the

obliquity of the ecliptic and the variable motion of the sun

in the ecliptic. This annual motion of the sun is only ap

parent and produced by the motion of the earth, which ac

cording to Kepler s laws moves in an ellipse, whose focus is

occupied by the sun, and in such a manner that the line

joining the centre of the earth and that of the sun (the ra

dius vector of the earth) describes equal areas in equal times.

If we denote the length of the sidereal year, in which the earth

performs an entire revolution in her orbit, by T we find for

the areal velocity F of the earth -
,

as the area of

the ellipse is equal to a*nVl e
2

,
or if we take the semi-

major axis of the ellipse equal to unity and introduce instead

of e the angle of excentricity r/&amp;gt;, given by the equation e= si

we find:

If we call the time, when the earth is nearest to the

sun or at the perihelion T, we find for any other time t

the sector, which the radius vector has described since the time

of the perihelion passage equal to F(t, T). But this sector
V

is also expressed by the definite integral \ Ir2
e?j/,

where r des-

o

ignates the radius vector and v the angle, which the radius
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vector makes with the major axis, or the true anomaly of the

earth. We have therefore the following equation:

2F(t-T)=j
r

-

n ,1 IT a (1 e
2
) a cos y

2
,

.

As we have tor the ellipse r= - =
, * tnis

H-ficos-^ l-+-ecosv

integral would become complicated. We can however in

troduce another angle for r
;
for as the radius vector at the

perihelion is a ae, at the aphelion = a-\-ae, we may
assume r= a(\ icos E) where E is an angle which is equal

to zero at the same time as v. For we get the following

equation for determining E from the two expressions of r:

cos v -+- e
cos h = - - -

,

l-j-e cos v

from which we see, that E has always a real value, as the

right side is always less than =f= 1.

By a simple transformation we get also :

cos E e cos w sin E
-- = cos v and - sm v

1 ecos-h 1 ecos/t

and differentiating the two expressions for r, we find:

dv a cos cp

r

Introducing now the variable E into the above definite

integral, we find:
E

2 F(t J7

)
= a 2 cos y 1(1

- e cos E} dE a~ cos ip (E e sin E),

o

hence taking again the semi -major axis equal to unity and

substituting for F its value found before we obtain:

where
w

is the mean sidereal daily motion of the earth, that

is the daily motion the earth would have if it were perform

ing the whole revolution with uniform velocity in the time T.

The first member of the above equation expresses therefore

the angle, which such a fictitious earth, moving with uniform

velocity, would describe in the time t T. This angle is

called the mean anomaly and denoting it by M, we can write

the above equation also thus:
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M= E e sin E,

and having found from this the auxiliary angle ,
we get

the true anomaly from the equation:

cos y smE
tang r= -r-~-----

.

cos hi e

But in case that the excentricity is small it is more con

venient, to develop the difference between the true and mean

anomaly into a series. Several elegant methods have been

given for this, whose explanation would lead us too far, but

as we need only a few terms for our present purpose, we can

easily find them in the following way. As we have v = M
when e= 0, we can take :

v =M+ v\.e + \ v\ .e 2 + l v&amp;gt;\
. e

3 4- . ..
,

where ?
,

i&amp;gt;&quot; etc. designate the first, second etc. differential

coefficient of v with respect to e in case that we take e= 0.

If we differentiate the equation sin v = c
,

s
-

]

written
1 cos E

logarithmically, we find:

cos v _ dE cos E e dy cosE e

sin* sin.E 1 ecosE cosy 1 ecosE
smr sin v a cos y sin v

or: dv=
. ^.dE-\- dy= T

dE-i- dy,
sinE . cosy r cosy

and if we differentiate also the equation for M, considering

only E and e as variable, we find:

dE= sin
vd&amp;lt;p

dv sin v dv sin v- = (2 -f- e cos v) and - = - -
(2 -f- e cos v).

dy COS9P de cosy

Taking here e= 0, we get i/ = 2 sin M.

In order to find also the higher differential coefficients

we will put P =
.,
and Q = 2 -h e cos v. We find then

cosy
1

easily, denoting the differential coefficients of P and Q after

having taken e = by P
, () etc.

P = cos M . v\ = sin 2 J/,

Q = cos M,
v&quot; ^= sin M. Q H- 2P = 4 sin 2 il/,

p&quot;
= cos J/. ^&quot; sin M. v\

2 + 2 sin il/= f sin 3M -h { sin M,

Q&quot;
= 2 sin M. v\ = 4 sin Jf 2

,

v &quot; == Sin M. Q&quot; -h 2 Q . P + 2P&quot; = V
3
sin 3 If f sin M.

Hence we get:

= 3/-h (2 e 1 e
3

) sin 3/4- ? e
2
sin 2 J/4- [^ e

3 sin 3 J/ 4- ...
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The excentricity of the earth s orbit for the year 1850

is 0.0167712. If we substitute this value for e and multiply
all terms by 206265 m order to get v M expressed in sec

onds of arc, we find:

v= M-+- G918&quot; . 37 sin M+ 72&quot; . 52 sin 2M -f- 1&quot; . 05 sin 3M,

where the periodical part, which is always to be added to

the mean anomaly in order to get the true anomaly, is called

the equation of the centre.

As the apparent angular motion of the sun is equal to

the angular motion of the earth around the sun, we obtain

the true longitude of the sun by adding to r the longitude n

which the sun has when the earth is at the perihelion and

M-\-n is the longitude of the fictitious mean sun
,
which is

supposed to move with uniform velocity in the ecliptic, or

the mean longitude of the sun. Denoting the first by A, the

other by L, we have the following expression for the true

longitude of the sun:

I= L -f 69 18&quot;. 37 sin M + 72&quot;. 52 sin 2M-+- 1&quot;.05 sin 3 M*\
or if we introduce L instead of M

,
as we have M= L n

and rc = 280 21 41&quot;.0:

A= Z-M244&quot;. 31 sin -f- 6805&quot;. 56 cos L
67. 82 sin 2L + 25. 66 cos 2Z

. 54sin3 . 90 cos 3 L.

In order to deduce the right ascension of the sun from

its longitude, we use the formula:

tang A= tang A . cos e,

which by applying formula (17) in No. 11 of the introduction

is changed into:

A= k tang TT e~ sin 2 1 -f- ^ tang -^
4
sin 4^ ...

where the periodical part taken with the opposite sign is cal

led the reduction to the ecliptic.

If we substitute in this formula the last formula found

for / and develop the sines and cosines of the complex terms

we find after the necessary reductions and after dividing by
15 in order to get the right ascension expressed in seconds

of time:

*) To this the perturbations of the longitude produced by the planets

must be added as well as the small motions of the point of the equinox.
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A = L -f- 86s . 53 s in L _|_ 4348 . 15 cos

-596 .64sin2L -h 1 .69 cos 2 JS

3 .77 sin 3/i - 18 . 77cos3L
-h 13 . 23 sin 4 L . 19cos4

-f- 0.16 sin 5 -h . 82 cos 5 L
. 36 sin 6 L -f- . 02 cos 6 L
.01 sin? .04 cosl L.

15. As the right ascension of the sun does not increase

at a uniform rate, the apparent solar time, being equal to

the hour angle of the sun, cannot be uniform. Another uni

form time has therefore been introduced, the mean solar time,

which is regulated by the motion of another fictitious sun,

supposed to move with uniform velocity in the equator while

the fictitious sun used before was moving in the ecliptic.

The right ascension of this mean sun is therefore equal to

the longitude L of the first mean sun. It is mean noon at

any place ,
when this mean sun is on the meridian

,
hence

when the sidereal time is equal to the mean longitude of the

sun and the hour angle of this mean sun is the mean time

which for astronomical purposes is reckoned from one noon

to the next from O h to 24h
.

According to Hansen the mean right ascension L of the

sun is for 1850 Jan. O h Paris mean time:

18 39 9s. 261,

and as the length of the tropical year that is the time in

which the sun makes an entire revolution with respect to the

vernal equinox is 365 . 2422008, the mean daily tropical mo
tion of the sun is:

9AO

365. 2422008
- 59 8. 38 o, - 8- 56- . 555 ta tim.,

its motion in 365 days= 23 h 59m 2 . 706= 57 . 294,

its motion in 366 days = 24 2 59 . 261 = 4- 2 59 261.

By this we are enabled to compute the sidereal time for

any other time. In order to find the sidereal time at noon

for any other meridian, we have the sidereal time at noon

for Jan. 1850 equal to:

18h 39 &quot; 9s . 261 -h X 3m 56 . 555,

where k denotes the difference of longitude from Paris, taken

positive when West, negative when East*).

*) Here again the small motion of the vernal equinox must be added.



97

The relation between mean and apparent time follows

from the formula for A. The mean sun is sometimes ahead

of the real sun, sometimes behind according to the sign of

the periodical part of the formula for A.

If we compute L for mean noon at a certain place, the

value of L A given by the above formula is the hour angle

of the sun at mean noon, as L is the sidereal time at mean

noon*). Now we call equation of time the quantity, which

must be added to the apparent time in order to get the mean

time. In order therefore to find from the expression for L A
the equation of time x for apparent noon, we must convert

the hour angle L A into mean time and take it with theo

opposite sign. But if n is the mean daily motion of the sun

in time and n-t-w the true daily motion on that certain day,

24 hours of mean time are equal to 24 w hours of apparent

time, hence we have:

x : A L == 24h : 24h
w,

24 h

or x= (A-L}~-
24h w

From the equation for A we can easily see how the

equation of time changes in the course of a year. For if we

take A L=
, retaining merely the three principal terms,

we have the equation:
= 8G.5 sin L 596.6 sin 2 L -+- 434.1 cos L,

from which we can find the values of L, for which the equa
tion of time is equal to zero, namely L= 23 16

,
L= 83 26

,

L = 16015
,
L = 2733

,
which correspond to the 15 th of

April, the 14th of June, the 31 st of August and the 24th of

December. Likewise we find the dates, when the equation

of time is a maximum, from the differential equation and we

get the 4 maxima:

H-14m 31s, 3m 53s, H-6m 12s,
- 16 IS*

on Febr. 12, May 14, July 26* Nov. 18.

The apparent solar day is the longest, when the variation

*) The above expression for L A is only approximate. The true value

must be found from the solar tables and is equal to the mean longitude mi

nus the true right ascension of the sun. The latest solar tables are those

of Hansen and Olufsen (Tables du soleil. Copenhagen 1853.) and Leverrier s

tables in Annales de 1 Observatoire Imperial Tome IV.

7
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of the equation of time in one day is at its maximum and

positive. This occurs about Dec. 23
,
when the variation is

30 s hence the length of a solar day 24 h O rn 30 s
. On the Con

trary the apparent day is the shortest, when the variation of

the equation of time is negative and again at its maximum.

This happens about the middle of September, when the va

riation is 21 s

,
hence the length of the apparent day 23 h

59&quot; 39 s
.

The transformation of these three different times can now be

performed without any difficulty, but it will be useful, to

treat the several problems separately.

16. To convert mean solar time into sidereal time and

conversely sidereal into mean time. As the sun on account

of its motion from West to East from one vernal equinox to

the next loses an entire diurnal revolution compared with

the fixed stars, the tropical year must contain exactly one

more sidereal day than there are mean days. We have there

fore :

365.242201
ay =

366. 242201
mean ^

= a mean day 3 in 55 s .909 mean time,

366.242201

3-6-042201
Sldereal da*

a sidereal day + 3m 56 s
. 555 sidereal time.

366.242201
and a mean day = TTTT^T sidereal day,J

060. 242201

Hence if (~) designates the sidereal time, M the mean

time and fy, the sidereal time at mean noon, we have :

and
24fa -4- 3 50s . 555

0o H
&quot;24iT~

The sidereal time at mean noon can be computed by
the formulae given before, or it can be taken from the astro

nomical almanacs, where it is given for every mean noon.

To facilitate the computation tables have been constructed,

which give the values of

24h 3 &quot; 55s . 9Q9

24h

and
24h -4- 3 U1 56 s

. 555
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for any value of t. Such tables are published also in the

almanacs and in all collections of astronomical tables.

Example. Given 1849 Juny 9 14 b 16 36 s
. 35 Berlin

sidereal time. To convert it into mean time.

According to the Berlin Almanac for 1849 the sidereal

time at mean noon on that day is

5 h 10 &quot; 48 s
. 30,

hence 9 1 5 in 48 s
. 05 sidereal time have elapsed between noon

and the given time and this according to the tables or if

we perform the multiplication by
24 h 3m 55s . 909

24*&amp;gt;

is equal to 9 h 4 in 18 s
. 63 mean time. If the mean time had

been given, we should convert it into sidereal hours, minutes

and seconds and add the result to the sidereal time at mean

noon in order to find the sidereal time which corresponds
to the given mean time.

17. To convert apparent solar time into mean time and

mean time into apparent time. In order to convert apparent
time into mean time, we take simply the equation of time

corresponding to this apparent time from an almanac and add

it algebraically to the given time. According to the Berlin

Almanac we have for the equation of time at the apparent
noon the following values:

I. Diff. II. Diff.

1849 June 8 - 1 &quot;20.73
.

9 1 9.37
+ S^+ s.27.

10 57.74

Therefore if the apparent time given is June 9 9 h 5m 23 s
. 60,

we find the equation of time equal to l
m

. 4 s
. 98, hence the

mean time equal to 9 4m 18 s .62.

In order to convert mean time into apparent time, the

same equation of time is used. But as this sometimes is

given for apparent time, we ought to know already the ap

parent time in order to interpolate the equation of time. But

on account of its small variation, it is sufficient, to take first

an approximate value of the equation of time, find with this

the approximate apparent time and then interpolate with this

a new value of the equation of time. For instance if 9 h 4m

18 s
. 62 mean time is given, we may take first the equation

7*
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of time equal to l
m and then find for 9 h 5m 18 s .6 apparent

time the equation of time I m 4 8

.98, hence the exact ap

parent time equal to 9&quot; 5m 23 s
. 60.

In the Nautical Almanac we find besides the equation

of time for every apparent noon also the quantity L A for

every mean noon given, which must be added to the mean

time in order to find the apparent time. Using then this

quantity, if we have to convert mean time into apparent time,

we perform a similar computation as in the first case.

18. To convert apparent time into sidereal time and con

versely sidereal into apparent time. As the apparent time is

equal to the hour angle of the sun, we have only to add the

right ascension of the sun in order to find the sidereal time.

According to the Berlin Almanac we have the following

right ascensions of the sun for the mean noon :

1849 JuneS 5h 5m 3Qs,79
,

9 9 38. 75
+
f ^+0s.27.

10 13 46 .98

Now if 9h 5m 23 s
. 60 apparent time on June 9 is to be

converted into sidereal time, we find the right ascension of

the sun for this time equal to 5 h 11 &quot;12
s

. 75, hence the si

dereal time equal to 14h 16m 36 s
. 35.

In order to convert sidereal time into apparent time we
must know the apparent time approximately for interpolating

the right ascension of the sun. But if we subtract from the

sidereal time the right ascension at noon, we get the number

of sidereal hours, minutes, etc. which have elapsed since noon.

These sidereal hours, minutes, etc. ought to be converted into

apparent time. But it is sufficient, to convert them into mean

time and to interpolate the right ascension of the sun for this

time. Subtracting this from the given sidereal time we find

the apparent time.

On June 9 we have the right ascension of the sun at

noon equal to 5 h 9m 38 s
. 75, hence 9 h 6m 57 s

. 60 sidereal

time or 9 h 5m 28 s
. 00 mean time have elapsed between noon and

the given sidereal time 14h 16m 36 s
. 35. If we interpolate

for this time the right ascension of the sun, we find again

5 h llm 12 s
. 75, hence the corresponding apparent time 9 h 5m

23 s
. 60.
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Instead of this we might find from the sidereal time the

corresponding mean time and from this with the aid of the

equation of time the apparent time.

Note. In order to make these computations for the time t of a meri

dian, whose difference of longitude from the meridian of the almanac is k,

positive if West, negative if East, we must interpolate the quantities from

the almanac, namely the sidereal time at noon, the equation of time and the

right ascension of the sun for the time t -+- k.

IV. PROBLEMS ARISING FROM THE DIURNAL MOTION.

19. In consequence of the diurnal motion every star

comes twice on a meridian of a place, namely in its upper

culmination, when the sidereal time is equal to its right

ascension and in its lower culmination, when the sidereal time

is greater by 12 hours than its right ascension. The time

of the culmination of a fixed star is therefore immediately

known. But if the body has a proper motion, we ought to

know already the time of culmination in order to be able to

compute the right ascension for that moment.

By the equation of time at the apparent noon, as given

in the almanacs, we find the mean time of the culmination

of the sun for the meridian, for which the ephemeris is pub

lished, and the equation of time interpolated for the time k

gives the time of culmination for another meridian, whose

difference of longitude is equal to k.

The places of the sun, the moon and the planets are given
in the almanacs for the mean noon of a certain meridian. Now
let f(a) denote the right ascension of the body at noon, expres

sed in time, and t the time of culmination, we find the right

ascension at the time of culmination by Newton s formula of

interpolation, neglecting the third differences, as follows:

/(a) -f- tf (a + ) H
i~~2~/&quot;

()

or a little more exact:

/(a) H- tf (a + |) + -(

{-Y
-/ ( + *)

As this must be equal to the sidereal time at that mo-
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merit, we obtain the following equation, where & designates
the sidereal time at mean noon and where the interval of the

arguments of f(ci) is assumed to be 24 hours:

4- t (24h;&amp;gt; 56s . 56) =/() + // ( + ft H-^^ f&quot; ( -h *),

hence :

&amp;lt;==
_ _._/M-.!?o

._J^3 56&quot;. SG-rCaH-*)]-
&quot; 1

/ (+*)

The second member of this equation contains it is true f,

but as the second differences are always small, we can in

computing t from this formula use for t in the second mem-

her the approximate

The quantity 6J f(a) is the hour angle of the body
at noon for the meridian for which the ephemeris has been

computed; if k is the longitude of another place, again
taken positive if West, the hour angle at this place would

be O
tt f(a) k

,
hence the time of culmination for this

place but in time of the first meridian is

24 3 &quot; 56s . 5G / ( -+- |)
_ f

2i

and the local time of culmination t=t k.

Example. The following right ascensions of the moon
are given for Berlin mean time:

/()
1861 July 14.5 13&quot; 7 5* . 3

15.0 13 34 22 .9
&quot;

Z&amp;lt; V;* +4 i k2

15.5 14 2 21 . 7 ? ^^ 43.5
;

16.0 1431 4.0

and the sidereal time at mean noon on July 15
r&amp;gt;

=7 h 33m

7 s
. 9. To find the time of the culmination of the moon for

Greenwich.

As the difference of longitude in this case is k= 53m

34 s
. 9, the numerator of the formula for t becomes 6 h 54m 49 s

. 9,

*) If the interval of the arguments of / () were 12 hours instead of

24 hours, the first term of the denominator in the above formula would be 12 h

l m 58 s
. 28, and if we start from a value /(), whose argument is midnight,

we would have to use H- 12 h lm 58 s
. 28 instead of 6&amp;gt; .
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the first terms of the denominator become ll h 33m 59 s
. 5,

hence the approximate value of t is 0.59775; with this we

find the correction of the denominator -f- 8 s
. 5 and the cor

rected value of t equal to 0.59762 or 7 h 10m 17 s

.O, hence

the local time of the culmination equal to 6 h
16&quot; 42 s

. 1.

For the lower culmination we have the following equation,

where a again designates the argument nearest to the lower

culmination :

H- t (24&quot; 3- 56&quot; . G) = 12 H-/(a) -I- */(a-H) +
^&quot;^

/ (+*),

hence the formula for a place whose longitude is &, is :

24*3- 56* . 56-/

or in case the interval of the arguments is 1 2 hours :

t
, = _

12 -i-f(a}-0 +k
12&quot; 1&quot;. 58s . 3 _/ ( + ;)

_ &amp;lt;

-i/ (a 4. )

Example. If we wish to find the time of the lower cul

mination at Greenwich on July 15, we start from July 15.5.

Hence the numerator becomes 7 h 20m 50 s

.4, the first terms

of the denominator become II 1 33m 16 s
. 0, hence the aproxi-

mate value of t is equal to 0.6359 and the corrected value

0.63577 or 7 h 37 m 45 8 .l. The lower culmination occurs there

fore at 19h 37m 45 s
. 1 Berlin mean time or at 18 h 44m 10 s .2

Greenwich time.

20. In No. 7^ we found the following equation :

sin h= sin
y&amp;gt;

sin 8 -\- cos cp
cos $ cos t. J^j I*

If the star is in the horizon
,
therefore h equal to zero,

we have:

= sin
&amp;lt;f

sin -f- cos cp cos S cos t Q .

hence: cos = tang y tang 8.

By this formula we find for any latitude the hour angle
at rising or setting of a star, whose declination in d. This

hour angle taken absolutejjL^alled the semi-upper diurnal arc

of the star. If we know the sidereal time at which the star

passes the meridian or its right ascension, we find the time

of the rising or setting of the star, by subtracting the ab

solute value of t
()

from or adding it to the right ascension.
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From the sidereal time we can find the mean time by the

method given before.

Example. To find the time when Arcturus rises and

sets at Berlin. For the beginning of the year 1861 we have

the following place of Arcturus:

a=14h9m iQs.3 = -f- 19 54 29&quot;.

and further we have:

tf
= 52 30 16&quot;.

With this we find the semi-diurnal arc:

to
= Ug 10 1&quot;. 3 = ?h 52m 4Qs .

Hence Arcturus rises at 6h 16m 39 s and sets at 22 h lm .39
s

sidereal time.

In order to find the time of the rising and setting of a

moveable body, we must know its declination at the time of

rising and setting and therefore we have -to make the com

putation twice. In the case of the sun this is simple. We
first take an approximate value of the declination and com

pute with it an approximate value of the hour angle of the

sun or of the apparent time of the rising or setting. As the

declination of the sun is given in the almanacs for every ap

parent noon, one can easily find by interpolation the decli

nation for the time of the rising or setting and repeat the

computation with this.

In the case of the moon the computation is a little longer.

If we compute the mean time of the upper and lower cul

minations of the moon, we can find the mean time corres

ponding to any hour angle of the moon. We then find with

an approximate value of the declination the hour angle at

the time of the rising or setting, find from it an approximate
value of the mean time and after having interpolated the de

clination of the moon for this time repeat the computation.
An example is found in No. 14 of the third section.

Note. The equation for the hour angle at the time of the rising or set

ting may be put into another form. For if we subtract it from and add it

to unity, we find by dividing the new equations :

, 2 _ cos (90 $)=

21. The above formula for cos tQ embraces all the va

rious phenomena, which the rising and setting of stars ac-
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cording to their positions with respect to the equator present

at any place on the surface of the earth.

If d is positive or the star is north of the equator, cos &amp;lt;

is negative for all places which have a northern latitude;

f therefore in this case is greater than 90 and the star

remains a longer time above than below the horizon. On
the contrary for stars, whose declination is south, t becomes

less than 90, therefore these remain a longer time below

than above the horizon of places in the northern hemisphere.

In the southern hemisphere of the earth, where
&amp;lt;f&amp;lt;

is negative,

it is the reverse, as there the upper diurnal arc of the sou

thern stars is greater than 12 hours. If we have
&amp;lt;y/

= 0, t

is 90 for any value of J; therefore at the equator of the

earth all stars remain as long above as below the horizon.

If we have 8= 0, t
(}

is also equal to 90 for any value of

,
hence stars on the equator remain as long above the

horizon of any place on the earth as below.

Therefore while the sun is north of the equator, the

days are longer than the nights in the northern hemisphere
of the earth, and the reverse takes place while the sun is

south of the equator. But when the sun is in the equator,

days and night are equal at all places on the earth. At

places on the equator
x this is always the case.

It is obvious that a value of t is only possible while we

have tang cp tang d &amp;lt;t 1. Therefore if a star rises or sets

at a place whose latitude is
rjp, tang 3 must be less than

cotang y or d &amp;lt; 90 ff.
If 8= 90

r/&amp;gt;,

we find t == 180

and the star grazes the horizon at the lower culmination.

If we have d
;&amp;gt;

90
(p ,

the star never sets
,
and if the

south declination is greater than 90
rf ,

the star never

rises.

As the declination of the sun lies always between the

limits s and -+- e, those places on the earth, where the sun

does not rise or set at least once during the year, have a

latitude north or south equal to 90 e or 66^. These

places are situated on the polar circles. The places within

these circles have the sun at midsummer the longer above and

in winter the longer below the horizon, the nearer they are

to the pole.
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Note. A point of the equator rises when its hour angle is 6 h
. Hence

if we call the right ascension of this point a, we find the stars, which rise

at the same time, if we lay a great circle through this point and the points

of the sphere, whose right ascensions are 6 h and 4-O h and whose de

clinations are respectively (90
&amp;lt;p)

and 4- (90 tp). Likewise we find

the stars, which set at the same time as this point of the equator, if we lay

the great circle through the points, whose right ascensions are 4-6 h and

a G h and whose declinations are respectively (90 90) and 90
&amp;lt;f&amp;gt;.

The point, which at the time of the rising of the point was in the horizon

in its lower culmination, is therefore now in its upper culmination at an

altitude equal to
2&amp;lt;p.

Hence at the latitude of 45 the constellations make

a turn of 90 with respect to the horizon from the time of their rising to the

time of setting, as the great circle which is rising at the same time with a

certain point of the equator, is vertical to the horizon, when this point is

setting. On the equator the stars, which rise at the same time, set also at

the same instant.

22. In order to find the point of the horizon, where

a star rises or sets, we must make in the equation:

sin = sin
y&amp;gt;

sin h cos
y&amp;gt;

cos h cos A,

which was found in No. 6, h equal to zero and obtain:

COS AQ = (l&amp;gt;).

cos cp

The negative value of A
{}

is the azimuth of the star at its

rising, the positive value that at the time of setting. The

distance of the star, when rising or setting, from the east

and west points of the horizon is called the amplitude of the

star. Denoting it by An we have:

A =90 4- A
hence :

sin d
sin A

t

= -
(c),

COS (p

where A
l

is positive, when the point where the star rises or

sets, lies on the north of the east or west points, nega
tive when it lies towards south.

The formula (c) for the amplitude may be written in a

different shape. For as we have:

1 4- sin A
{

sin
t/j 4- sin

1 sin A
t

sin \p sin 8

when
ifj
= 90 y, we find :

w 8
tang

r~ -

tang
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For Arcturus we find with the values of d and
r^, given

before: ^1
/

= 340 .9.

23. If we write in the equation:

sin h = sin
&amp;lt;f&amp;gt;

sin S -{- cos
&amp;lt;p

cos S cos t

1 2 shir}/
2 instead of cos f, we get:

sin h= cos (9? 8} *2 cos 9? cos S sin \t^ .

From this we see, that equal altitudes correspond to

equal hour angles on both sides of the meridian. As the

second term of the second member is always negative, h has

its maximum value for t = and the maximum itself is found

from the equation:

COS Z = COS
(&amp;lt;JT

-
S) ((/),

from which we get:

z=
&amp;lt;p

S or= S
(f&amp;gt;.

If we take therefore in general:
z= S

y&amp;gt;,

we must take the zenith distances towards south as negative,

because for those star, which culminate south of the zenith,

&amp;lt;) is less than
(f.

On the contrary /* is a minimum at the lower culmi

nation or when =180, as is seen, when we introduce

180-|- instead of
, reckoning therefore t from that part

of the meridian, which is below the pole. For then we
have :

sin h = sin rp sin S cos
rp cos 3 cos t .

or introducing again 1 2 sin \t
2 instead of cos t :

sin h= cos [180 =F (T + 8}] -\- 2 cos y cos S sin j*
2

.

As the second term of the second member is always

positive, h is a minimum when t equals zero or at the lower

culmination., when we have:

cos z= cos [180 =F (&amp;lt;F
4- S)].

As z is always less than 90, when the star is visible in

its lower culmination, we must use the upper sign, when cp

and c) are positive, and the lower sign for the southern hemi

sphere, so that we have:

for places in the northern hemisphere, and:

z = (180 +
&amp;lt;p

-f- 8}

for places in the southern hemisphere.
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The declination of a Lyrae is 38 39 , hence we have

for the latitude of Berlin d
qp
= 13 51 . The star a

Lyrae is therefore at its upper culmination at Berlin 13 51

south of the zenith, and its zenith distance at the lower cul

mination equal to 180
cp

d is 88 51 .

24. A body reaches its greatest altitude at the time of

its culmination only if its declination does not change, and

in case that this is variable, its altitude is a maximum a little

before or after the culmination. If we differentiate the for

mula :

cos z= sin cp sin -+- cos
&amp;lt;p

cos cos t,

taking ,
d and t as variable, we find:

sin zdz= [sin &amp;lt;p

cos 8 cos y sin cos t]
dS cos

cp
cos S sin tdt

and from this we obtain in the case that z is a maximum
or dz = 0:

d8
r ssm t= -
[tang y tang &quot; cos *J-

This equation gives the hour angle at the time of the
7
ft

greatest altitude. is the ratio of the change of the decli

nation to the change of the hour angle, or if dt denotes a

second of arc, it is the change of the declination in T̂ of a

second of time. As this quantity is small for all heavenly

bodies, and as we may take the arc itself instead of sin t

and take cos t equal to unity, we get for the hour angle

corresponding to the greatest altitude:

dS
r ,,206265

t=
-j-

[tang &amp;lt;p tang 8] ~^ (g\

7 V&amp;lt;

where is the change of the declination in one second of

time and t is found in seconds of time. This hour angle

must be added algebraically to the time of the culmination,

in order to find the time of the greatest altitude.

If the body is culminating south of the zenith and ap-
7 S&amp;gt;

proaching the north pole, so that is positive, the greatest

altitude occurs after the culmination if
y&amp;gt;

is positive; but if

the declination is decreasing, the greatest altitude occurs

before the culmination. The reverse takes place, if the body
culminates between the zenith and the pole.
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25. If we differentiate the formulae:

cos h sin A = cos 8 sin t,

cos h cos A= cos
90

sin 8 -f- sin
90
cos cos /,

we find:

sin h = cos 3 [sin cp cos ^4 sin t cos t sin A],

cos A r-= cos S [cos ^ cos / -f- sin cp sin t sin .4],

or:

dh , .= cos o sm p= cos
90

sin A,

cos A = -t- cos $ cos p. (A)
a

Frequently we make use also of the second differential

coefficient. For this we find:

d l h
t
dA

=-cosycos^. ,

cos 9? cos S cos J. cosp
cos A

Likewise we have:

t/z ~ .
- = cos o sm p= cos 9? sm ^4,

c?
2 z _ cos cp cos S cos ^4 cos p~~

Furthermore we find from the second of the formulae (/&)
:

d 2 A dp dh
cos /r = cos h cos o sm p -f- cos o cos p sm h ---

c/&amp;lt;

2 * dt dt

But we get also, differentiating the formula:

sin cp
= sin h sin S -+- cos A cos S cos

/&amp;gt;,

cos h cos $ sin p
-- - =

[cos A sin 8 sin h cos 8 cos
]

-

dt at

Hence we have:

cos A 2

^
= -+- [cos A sin ^ 2 cos 8 sin A cos p] cos # sin p,

or, if we introduce A instead of p:
d* A

cos A 2

2
- = cos

95 sin J. [cos A sin 8 -f- 2 cos 9? cos vlj.

26. As we have :

dh- = cos 95 sm A,

we find = 0, or A is a maximum or minimum, when we

have sin A= or when the star is on the meridian.
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We find also that
c

-

1

- is a maximum, when sin A = =t
1,

hence when A = 90 or = 270.

The altitude of a star changes therefore most rapidly, when
it crosses the vertical circle, whose azimuth is 90 or 270.

This vertical circle is called the prime vertical.

In order to find the time of the passage of the star

across the prime vertical as well as its altitude at that time,

we take in the formulae found in No. 6 A = 90 or we con

sider the right angled triangle between the star, the zenith

and the pole and find:

tang S
cos /=

tang rp ^
. sin 8

sin (f

Finally we have:
COS (f

sin p= ^
cos o

If we have &amp;lt;)

;&amp;gt;
&amp;lt;f&amp;gt;,

cos t would be greater than unity,

therefore the star cannot come then in the prime vertical

but culminates between the zenith and the pole. If S is

negative, cos t become negative; but as in northern latitudes

the hour angles of the southern stars while above the horizon

are always less than 90, those stars cross the prime vertical

below the horizon.

For Arcturus and the latitude of Berlin we find :

t= 73 52 . 1 = 4h 55 28

h = 25 24 . 9.

Arcturus reaches therefore the prime vertical before its

culmination at 9 b 13m 51 s and after the culmination at 19 h

4in 47 s
.

If the hour angle is near zero, we do not find t very
accurate by its cosine nor h by its sine. But we easily get
from the formula for cos t the following:

, 2
sin (cp $)

sin
(y&amp;gt;

-+- S)

and for computing the altitude we may use the formula:

cotang h= tang t cos
(p.

27. As we have:

dA cos S cos p
dt cos h



Ill

we see that this differential coefficient becomes equal to zero,

or that the star does not change its azimuth for an instant,

when we have cos p = o, or when the vertical circle is ver

tical to the declination circle. But as we have :

sin
&amp;lt;p

sin h sin S
cos p = ----- V

cos h cos d

this must occur when sin (c = &

!

n
-f . It happens therefore

sin d

only to circumpolar stars, whose declination is greater than

the latitude, at the point where the vertical circle is tangent

to the parallel circle. The star is then at its greatest dis

tance from the meridian and the azimuth at that time is given

by the equation:
cos S

sm A= -

cosy

and the hour angle by the equation:

tang (p
cos t

h
-

tang o

For the polar star, whose declination for 1861 is 88

34 6&quot; and for the latitude of Berlin, we find:

^ = 88 8 0&quot;
= 5 52^ 32s

-4= 2 21 9&quot; reckoned from the north point, A = 5231 .7.

28. Finally we will find the time, in which the discs

of the sun and moon move over a certain great circle.

If /\n is the increment of the right ascension between

two consecutive culminations expressed in seconds of time,

we find the number of sidereal seconds #, in which the body
moves through the hour angle t from the following proportion:

x: t= 86400 -|-A: 86400

as we may consider the motion of the sun and moon during
the small intervals of time which we here consider, as uni

form; hence we have:

1

86400 -4- A

or denoting the second term of the denominator, which is

equal to the increment of the right ascension expressed in

time in one second of sidereal time, by A:
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When the western limb of the body is on the meridian,

the hour angle of the centre, is found from the equation:

cos R= sin
*

-f- cos S* cos t

where R designates the apparent radius, or from:

sin ^ R= cos 8 sin \ t.

Hence, as t is small, this hour angle expressed in time is:

R
15 cos S

therefore the sidereal time of the semi - diameter passing the

meridian :

2R 1

~15.cos.Tl-r
When the upper limb of the body is in the horizon, the

depression of the lower limb is equal to 272, and as we have:

- = cos d sin p, the difference of the hour angles of the up-d t

per and lower limb in time is:

15 . cos d sinp

hence the sidereal time of the diameter rising or setting:

2R_ I

15 . cos S sin p 1 A

where p is found from the equation:
sin (p

cos = -

cos o

If we imagine two vertical circles one through the centre,

the other tangent to the limb, the difference of their azimuths

is found from the equation:

sin ^ R= cos h sin | a

or, as R is small, from the equation:

R= cos A . a.

But as we have dt = coshdA~ we find for the sidereal
cos o cos p

time in which the diameter passes over a vertical circle:

2R J^
15 cosd.cosp 1 A

cos S sin
&amp;lt;f

sin S cos
q&amp;gt;

cos t

where =
COS ft



SECOND SECTION.

ON THE CHANGES OF THE FUNDAMENTAL PLANES, TO WHICH
THE PLACES OF THE STARS ARE REFERRED.

As the two poles do not change their place at the sur

face of the earth, the angle between the plane of the hori

zon of a place and the axis of the earth or the plane of the

equator remains constant. Likewise therefore the pole and

the equator of the celestial sphere remain in the same po
sition with respect to the horizon. But as the position of

the axis of the earth in space is changed by the attraction

of the sun and moon, the great circle of the equator and the

poles coincide at different times with different stars, or the

latter appear to change their position with respect to the

equator. Furthermore as the attractions of the planets change
the plane of the orbit of the earth, the apparent orbit of the

sun among the stars must coincide in the course of years
with different stars. Hence the motion of these two planes,

namely that of the earth s equator and that of the earth s

orbit produce a change of the angle between them or of the

obliquity of the ecliptic as well as a change of the points
of intersection of the two corresponding great circles. The

longitudes and latitudes as well as the right ascensions and

declinations of the stars are therefore variable and it is most

important to know the changes of these co-ordinates.

In order to form a clear idea of the mutual motions of

the equator and ecliptic, we must refer them to a fixed place,
for which we take according to Laplace that great circle,

with which the ecliptic coincided at the beginning of the year
1750. Now Physical Astronomy teaches, that the attraction

of the sun and moon on the excess of matter near the equator
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of the spheroid of the earth, creates a motion of the axis of

the earth and hence a motion of the equator of the earth

with respect to the fixed ecliptic, by which the points of in

tersection have a slow, uniform and retrograde motion on

this fixed plane and at the same time a periodical motion,

depending on the places of the sun and moon and on the

position of the moon s nodes viz. of the points in which

the orbit of the moon intersects the ecliptic. The uniform

motion of the equinoxes is called Lunisolar Precession, the

other periodical motion is called the Nutation or the Equation

of the equinoxes in longitude. Besides this attraction creates

a periodical change of the inclination of the equator to the

fixed plane, dependent on the same quantities, which is called

the Nutation of obliquity.

As the mutual attractions of the planets change the in

clinations of the orbits with respect to the fixed ecliptic as

well as the position of the line of the nodes, the plane of

the orbit of the earth must change its position with respect

to the plane, with which it coincided in the year 1750 or

the fixed ecliptic. This change produces therefore a change

of the ecliptic with respect to the equator, which is -called

the Secular variation of the obliquity of the ecliptic and the

motion of the point of the intersection of the equator with

the apparent ecliptic on the latter, which is called the General

Precession differs from the motion of the equator on the fixed

ecliptic, which is called the luni- solar precession*).

But this change of the orbit of the earth has still an

other effect, For as by it the position of the orbit of the

sun and the moon with respect to the equator of the earth

is changed, though slowly, this must produce a motion of

the equator similar to the nutation only of a period of great

length , by which the inclination of the equator with respect

to the ecliptic as well as the position of the points of inter

section is changed. These changes on account of their long

period can be united with the secular variation of the obli

quity of the ecliptic and with the precession. Hence the

*) The periodical terms, the nutation, are the same for the fixed and

moveable ecliptic.
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motion of the equator, indirectly produced by the perturbations

of the planets, changes a little the lunisolar precession as

well as the general precession and the angle, which the fixed

and the true ecliptic make with the equator *).

I. THE PRECESSION.

1. Laplace has given in .44 of the sixth chapter of

the Mecanique Celeste the expressions for these several slow

motions of the equator and the ecliptic, which can be applied
to a time of 1200 year before and after the epoch of 1750,
as the secular perturbations of the earth s orbit are taken

into consideration so as to be sufficient for such a space of

time. Bessel has developed these expressions according to

the powers of the time which elapsed since 1750 and has

given in the preface to his Tabulae Regiomontanae these ex

pressions to the second power. According to this the an

nual lunisolar precession at the time 1750 -f- t is:

-^
= 50&quot;. 37572 0&quot;. 000243589 t

or the amount of the precession in the interval of time from

1750 to 1750 -M:
l
t

= t. 50&quot;. 37572 t
2

0&quot;. 0001 2 17945.

This therefore is the arc of the fixed ecliptic between

the points of intersection with the equator at the beginning
of the year 1750 and at the time 1750 -M.

Furthermore the annual general precession is :

^j
=

50&quot;. 21129 + 0&quot;. 0002442966 t

and the general precession in the interval of time from 1750

to 1750 -M:
l=t 50&quot;. 21 129 -M 2

0&quot;. 0001221483,

and this is the arc of the apparent ecliptic between the points
of intersection with the equator at the beginning of the year
1750 and at the time 1750 -1- t.

*) In the expressions developed in series they change only the terms

dependent on t
2

.
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Finally the angle between the equator and the fixed

ecliptic is at the time 1750-f-:

o
= 23 28 18&quot;. 4- t* 0&quot;. 0000098423

and the angle between the equator and the ecliptic at the time

1750-M (if we neglect as before the periodical terms of nu

tation), which is called the mean obliquity of the ecliptic, is :

e= 23 28 18&quot;.0 t 0&quot;. 48368 z
2

0&quot;. 00000272295 *),

so that we have:

dt

d
f = 0&quot;. 48368 0&quot;. 0000054459 t.

dt

Now let AA
(} Fig. 2 represent the equator and EEn

the

ecliptic both for the beginning of the year 1750, and let A A 1

and E E represent the equator and the obliquity of the ecliptic

for 1750-M; then the arc BD of the ecliptic, through which

the equator has retrograded on it, is the lunisolar precession

in t years, equal to
/,.

Further are BCE and A BE respect

ively the inclination of the true ecliptic and of the fixed

ecliptic of 1750 against the equator, equal to s and . If

*) Bessel has changed a little the numerical values of the expressions

given in the Mecanique Celeste, as he recomputed the secular perturbations

of the earth with a more correct value of the mass of Venus and determined

the term of the lunisolar precession /,,
which is multiplied by t, from more

recent observations. The secular variation of the obliquity of the ecliptic

as deduced from the latest observations differs from the value given above,

as it is 0&quot;.4645. But the above value is retained for the computation of the

quantities n and 77, which determine the position of the ecliptic with respect

to the fixed plane, as it must be combined for this purpose with the value of

,
based on the same values of the masses. The terms multiplied by t~,

dt

which depend on the perturbations produced by the planets, are based on

the values of the masses adopted by Laplace and need a more accurate de

termination.

Peters gives in his work ,,Numerus constans nutationis&quot; other values com

puted with the latest values of the masses. These are, reduced to the year

1750 and to Bessel s value of the lunisolar precession as follows:

l
t

= t 50&quot;.37572 t&quot;- 0&quot;.0001084

I = t 50V214S4 -h z
2

0&quot;.0001134

s = 23 28 17 .9 -4- 0&quot;.00000735 f2

= 23 28 17&quot;.9 0&quot;.4738 t 0&quot;.00000140 t
2

.

But as Bessel s values are generally used, they have been retained.
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Fig. 2.

then S represents a star and SL and SL are drawn vertical

to the fixed and to the true ecliptic, DL is the longitude

of the star for 1750 and CL the longitude of the star for

1750-M. If further D denotes the same point of the true

ecliptic which in the fixed ecliptic was denoted by D, the arc

CD is the general precession, being the arc of the true

ecliptic between the equinox of 1750 and that of 1750+ ?.

This portion of the precession is the same for all stars, and in

order to find the complete precession in longitude, we must

add to it D L DL; which portion on account of the slow

change of the obliquity is much less than the other. For

computing this portion we must know the position of the

true ecliptic with respect to the fixed ecliptic, which is

given by the secular perturbations and may also be deduced

from the expressions given before. For if we denote by // the

longitude of the ascending node of the true ecliptic on the

fixed ecliptic (or that point of intersection of the two great
circles setting out from which the true ecliptic has a north

latitude) and if we reckon this angle from the fixed equi

nox of the year 1750, we have BE = 180 -- //
/,
and

CIS = 180 - // /, as the longitudes are reckoned in the

direction from B towards D and as E is the descending node

of the true ecliptic, hence DE 180 //. If we denote

the inclination of the true ecliptic or the angle EEC by n,

we have according to Napier s formulae:
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frr . 4-tJi . l
t

l *-f-*o
tang 4 7t . sin

j

II-}-
j

= sin --- - -
tang

-
,

( I,-*- I
\

l
t

l s

tang ^ 7t . cos
j/7-f- j

= cos
^ tang

-
,

As 5 is the same point of the equator which in the year
1750 was at

Z&amp;gt;,

BC is the arc of the equator, through which

the point of intersection with the ecliptic has moved on the

equator from west to east during the time t. If we denote

this arc, which is the Planetary Precession during the time
,

by a, we find from the same triangle:

tang Y a . cos - -= tang T- (lt /) cos - -

From these equations we can develop a, as well as n

and // into a series progressing according to the powers of

t. From the last equation, after introducing:

o + T ( o) instead of - -

and taking instead of the sines and tangents of the small

angles /, /, a and e the arcs themselves, we find:

/,
B

206265

or if we substitute for
/,,

/ and s their expressions, which

are of the following form A,-f- A
,

2
,
Kt -\- K t

2 and

we obtain:

coSo ( cos o
8

206265 cos fo
2

or if we substitute the numerical values:

a= t. 0.17926 t
1
0&quot;.0002660393,

d &quot; = 0.17926 t . 0&quot;.0005320786.
dt

In addition we have:

tang \n+
l l

}
= tang

--
.

,J ,

sin ~

and
( I P -+-

2
S

2
)

/,
I
2

tang T} 7T
2 =

j
tang

-L
-~^~ tang

- h tang
j

cos
^

or proceeding in a similar way as before :

]

tang
\
iJT+lft + Oj =&quot;;;

+^|^
a 2

sin f o cos o (e )
7T

2 ==a 2 sine 2 + ( o)
2 +

206265
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Substituting here also for e and a the expression
_ rj j

2 and at -\- a f% we find :

sin e
n 4- 4 (/ -h = arc tang

7?

_

2062bo-h .cos cos7Z

206265
7i = t \ a? sin

2
H- ?7

2
-f-

-- \aa sin f
?

-f- rj v/
-

or substituting the numerical values:

77=171 36 10 *.5&quot;.21

7t= t.Q&quot;. 48892 *
a

0&quot;. 0000030715

^= 0&quot;. 48892 ^.0&quot;. 0000061430.
rf&amp;lt;

2. The mutual changes of the planes, to which the po
sitions of the stars are referred, having thus been determined,

we can easily find the resulting changes of the places of

the stars themselves. If A and ft denote the longitude and

latitude of a star referred to the ecliptic of 1750 -+- ,
the

co-ordinates of the star with respect to this plane, if we take

the ascending node of the ecliptic on the fixed ecliptic of

1750 as origin of the longitudes, are as follows:

cos ft cos (A 77 /), cos ft sin (h 77 J), sin ft.

If further L and B are the longitude and latitude of the

star referred to the fixed ecliptic of 1750, the three co-ordi

nates with respect to this plane and the same origin as be

fore are:

cos B cos (L 77), cos B sin (L 77), sin B.

As the fundamental planes of these two systems of co

ordinates make the angle n with each other, we find by the

formulae (1 a) of the introduction the following equations :

cos ft cos (A 77 I)
= cos B cos (L 77)

cos ft sin (1 77 /)
= cos B sin (L 77) cos n -+- sin B sin n (A)

sin ft
= cos B sin (L 77) sin n -f- sin B cos n.

If we differentiate these equations, taking L and B as

constant, we find by the differential formulae (11) in No. 9

of the introduction, as we have in this case a= 90 ft,

6=90 B, c=7r, 4= 90-f-L 77, 5= 90 (I II I}:

d (I 77 /)
= flH+ n tang ft sin (A 77 /) dll

H- tang ft cos (/I
77 /) d n

dft
= -J- n cos (A 77 /) c/77 sin (7 77 I) dn.
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Dividing by dt and substituting t instead of n in the

coefficient of
&amp;lt;///,

we obtain from these the following for

mulae for the annual changes of the longitudes and latitudes

of the stars:

dl di
t

/. dn \d7t=
, -f- tang B cos (/ II I t\

dt dt \ dt ) dt

dS f . dn \ dn
- = sin I / n I t]

dt \ dt J dt

or, as we have //+ d

^t = 171 36 10&quot; MO&quot;. 42, taking:

ZT-f- 1

d
^--+- 1= 171 36 10&quot; + t 39&quot;.79 = M,
dt

d^ _ dl

dt
~

dt

where the numerical values for and as given in the
dt dt

preceding No. must be substituted.

Let L and B again denote the longitude and latitude

of a star, referred to the fixed ecliptic and the equinox of

1750, then the longitude reckoned from the point of inter

section of the equator of 1750-f- with the fixed ecliptic, is

equal to L + /,,
when

/,
is the lunisolar precession during

the interval from 1750 to 1750 -f- 1. Hence the co-ordinates

of the star with respect to the plane of the fixed ecliptic

and the origin of the longitudes adopted last are:

cos B cos (L -f- /,), cos B sin (L -+- /,)
and sin B.

If now a and 8 denote the right ascension and decli

nation of the star, referred to the equator and the true

equinox at the time 1750-f-, the right ascension reckoned

from the origin adopted before, is equal to -+- a. We have

therefore the co-ordinates of the star with respect to the

plane of the equator and this origin as follows:

cos cos ( -f- a), cos S sin (a -f- ) and sin 8.

As the angle between the two planes of co-ordinates is

c
,
we find from the formulae (1) of the introduction:

cos 8 cos ( -f- a) = cos B cos {L -\- /,)

cos sin (a -\- a) = cos B sin (L -+- /,) cos e sin B sin e (C)

sin S= cos B sin (L -f- /,)
sin -f- sin B cos s .
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If we differentiate these equations, taking L and B as

constant, we find from the differential formulae (11) of the

introduction, as we have in the triangle between the pole of

the ecliptic, that of the equator and the star a= 90 &amp;lt;)

,

b = 90 B, c =
,
A = 90 (L -h 0, 5= 90

d (a 4- )
=

[cos f 4- sin e tang sin (a 4- )] ^ cos (a 4- a) tar

dS= cos (a 4- a) sin e- dl
t
4~ sin (a 4- a) ds .

We find therefore for the annual variations of the right
ascensions and declinations of the stars the following for

mulae :

da da dl
-.- = h [cos 4- sm tang o sm a]

- - -

( . dl, de
\

~

4- 1 a sm e -- - - ---
? tang o cos

,

rfe 1 sm ,

or neglecting the last term of each equation on account of

its being very small *) :

da da
. dl,

,
= -- r [cos -f- sin e

t) tang o sm 1 ,

at at dt

d

dt

If we take here:

~ = cos sin
,

rfJ, rfa
cos = m.

dt dt

8
rf&amp;lt;

we find simply:
cfa = m 4- n tang o sin

,

-- - = n cos
,

where the numerical values of m and w, obtained by substi

tuting the numerical values of g
,

- and
/tt

,
are:

w *
&amp;lt;Y t

m = 46&quot; . 02824 4- 0&quot; . 0003086450 t

n= 20&quot; . 06442 0&quot; . 0000970204 t.

In order to find the precession in longitude and latitude

or in right ascension and declination in the interval from

*) The numerical value of the coefficient a sin
, is only

0.0000022471 t.
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1750 -M to 1750-M ,
it would be necessary to take the

integral of the equations (JB) or (D) between the limits t

and t . We can find however this quantity to the terms of

the second order inclusively from the differential coefficient

at the time - and from the interval of time. For if

and
/&quot;(Y)

are two functions, whose difference
/&quot;( ) f(f) is

required, (in our case therefore the precession during the time

t ), we take :

( + *)
= *,

*(* )
= A*.

Then we have:

/(O =/(* - A*) =/(*) - A*/ GO + 4 A* 2
/&quot; (*),

/(*0=/(* + A*) =/(*) + A */ (*) -f- IA* 2
/&quot; CO,

where
/&quot; (a?) and

f&quot; (x) denote the first and second differential

coefficient of f(x). From this we find:

/(O -/(O = 2 A*/(aO= (
- O

Hence in order to find the precession during the inter

val of time t
,

it is only necessary to compute the dif

ferential coefficient for the time exactly at the middle and

to multiply it by the interval of time. By this process only

terms of the third order are neglected.

For instance if we wish to find the precession in lon

gitude and latitude in the time from 1750 to 1850 for a

star, whose place for the year 1750 is:

A = 2100
, /?
= -+- 34

we find the following values of -

, and M for 1800:
dt dt

=50&quot;. 22350, ^=0&quot;. 48861, M= 172 9 20&quot;.

dt dt

With these we find the following place for 1800, com

puting the precession from 1750 to 1800 only approximately:
/l= 210 42 .l, /

5= -f-33 59 .8

from the formulae (5) we find then the annual variations for

1800:

^= -t- 50&quot;. 48122, ^ = -0&quot;. 30447,
dt dt

hence the precession in the interval from 1750 to 1850:

in longitude + 1 24 8&quot;. 12 and in latitude 30&quot;. 45.
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If we wish to find the precession in right ascension and

declination from 1750 to 1850 for a star, whose right ascen

sion and declination for 1750 is:

= 220 1
24&quot;,

^= + 20 21 15&quot;

we have for 1800:

m= 46&quot;. 04367, n= 20&quot;. 05957,

and the approximate place of the star at that time:

== 220 35 . 8, &amp;lt;?
= -j-20 8 . 6

hence we have according to formulae (D):

tang 9 . 56444 n tang sin a= 4 . 78806

sin a 9 . 81340. m= + 46 . 04367

tang 8 sin a= 9 . 37784,,
da = + 41 . 25561

n=l. 30232
dt

cos a= 9. 88042,, - = 15 . 2314
at

therefore the precession in the interval of time from 1750

to 1850

in right ascension 1 8 45&quot;. 56 and in declination 25 23&quot;. 14.

In the catalogues of stars we find usually for every star

its annual precession in right ascension and declination (va-
riatio annua) given for the epoch of the catalogue and be

sides this its variation in one hundred years (variatio sae-

cularis). If then t, denotes the epoch of the catalogue, the

precession of a star according to the above rules equals:

( t t n
variatio annua -f-

~

OArr&quot; variatio saecularis (* *)
A(J(J

)

If we differentiate the two formulae:

da = m -+- n tang o sin a,

dS-
d&amp;lt;

-=cos,

taking all quantities as variable and denoting the annual

variations of m and n by m and ri, we find:

d * a n 2
. . mn

dt 2
==

^7
Sin

&quot;
**&quot; tang ^ ~*

------- tanS ^ cos a H- m -f- n tang 8 sin n,

.

-77^
=-- sm a 2

tang 8 sin a -f- n cos a,

where w signifies the number 206265, and multiplying these

equations by 100 we find the secular variation in right as-
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cension and declination. For the star used before we find

from this the secular variation :

in right ascension = -f- 0&quot;. 0286,

in declination = -f- 0&quot;. 2654.

3. The differential formulae given above cannot be

used if we wish to compute the precession of stars near the

pole. In this case the exact formulae must be employed.
Let A and ft denote the longitude and the latitude of a

star, referred to the ecliptic and the equinox of 1750 -+- /,

we find from these the longitude and latitude L and #,

referred to the &quot;fixed ecliptic of 1750, from the following

equations, which easily follow from the equations (.4) in

No. 2:

cos B cos {L 77) = cos /9 cos (A II I)

cos B sin (L 77) = cos /? sin (A 77 /) cos n sin /? sin n
sin B = cos /? sin (A 77 f) sin n + sin ft cos 7t.

If we wish to find now the longitude and latitude A

and ft ,
referred to the ecliptic and the equinox of 1750 -\-t\

we get these from L and B by the following equations, in

which 77
,
n and / denote the values of 77, n and / for the

time t :

cos /? cos (A 77 / )
= cos B cos (L 77 )

cos $ sin (A 77 I ) cos B sin (L 77 ) cos n
1

-f- sin B sin n

sin /?
= cos 73 sin (7L 77 ) sin n -+- sin B COSTT .

If we eliminate L and B from these equations, we can

find A and /? expressed directly by A and
/

and the values

of /, 77 and n for the times t and f .

The exact formulae for the right ascension and declination

are similar. If a and 8 are the right ascension and decli

nation of a star for 1750 -f- f, we find from them the longi

tude and latitude L and J5, referred to the fixed ecliptic of

1750, by the following equations*):

cos B cos {L -+- Z,)
= cos cos (a -f- a)

cos B sin (L -h /,)
= cos 8 sin ( -+- ) cos s -+- sin S sin

sin 73= cos $ sin (a -+- a) sin -+- sin 8 cos .

If we wish to know now the right ascension and decli

nation a and S for 1750 4- f
,
we find these from L and 7?

*) These equations are easily deduced from the equations (C) in No. 2.
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by the following equations, in which l
fl

a and denote the

values of
/,,

a and for the time t :

cos 8 cos (a
1

4- )
= cos B cos (X 4- Z

,)

cos &amp;lt;? sin ( 4- )
= cos Z? sin (Z 4- /

,)
cos s sin B sin s

sin $ = cos B sin (L 4- Z
,) sin e 4- sin B cos s .

If we eliminate L and 1? from the two systems of

equations and observe that we have:

cos B sin L = cos S cos (a 4- ) sin
Z, 4- cos 8 sin (a 4- ) cos cos

Z,

4- sin $ sin s cos
Z,

cos 7? cos L = cos $ cos ( 4- ) cos Z
/
4- cos $ sin ( 4- a) cos e sin

Z,

4~ sin $ sin e sin
Z,

sin B = cos $ cos (a 4- ) sin e -+- sin &amp;lt;? cos e,

we easily find the following equations:
cos S cos (a

1

4- )
= cos $ cos (a 4- a) cos (Z , /,)

cos $ sin (a 4- a) sin (Z , Z,)
cos e,,

sin $ sin (Z , Z,) sin e

cos $ sin ( 4- )
= cos $ cos (a 4- a) sin (Z , Z,) cos e

4- cos #sin( 4- fi) [cos (Z , Z,)
cos e cos e 4-sin sin e

]

4- sin$[cos(Z , Z,)sine cose cose sine
]

sin S cos S cos ( 4- a) sin (Z/ Z
() sin e

4- cos &amp;lt;?sin(4-)[cos(Z / Z,)cose sinf o sine cose
]

4- sin
&amp;lt;?[cos(Z , Z,)sine sin 4-cos cose

,,].

If we imagine a spherical triangle, whose three sides are

/
, /,,

90 z and 90 -f- z
1

whilst the angles opposite those

sides are respectively 0, and 180 g
,
we can express

the coefficients of the above equations, containing /
; /, ()

and e H by 0, ^ and s and we find:

cos 5 cos ( 4- )
= cos 8 cos (a 4- a) [cos cos 2 cos z sin 2 sin z]

cos S sin (a 4- a) [cos sin 2 cos 2 4- cos 2 sin 2
]

sin 8 sin cos z

cos 5 sin (a 4- a )
= cos 8 cos (a 4- a) [cos cos 2 sin z

]

4- sin 2 cos z
1

]

cos $ sin (a 4- a) [cos sin z sin 2 cos z cos 2
]

sin S sin (9 sin 2

sin 5 = cos 8 cos (a 4- a) sin cos 2

cos 8 sin (a 4- ) sin 6&amp;gt; sin 2

4- sin 8 cos &amp;lt;9.

Multiplying the first of these equations by sin *
,

the

second by cos z and subtracting the first, then multiplying
the first by cos *

,
the second by sin z and adding the pro

ducts we get:
cos S sin ( 4- a z) = cos 8 sin ( 4- a 4- 2)

cos 8 cos ( 4- 2 )
= cos S cos (a 4- a 4- 2) cos sin ^ sin 6&amp;gt; (a),

sin S = cos ^ cos (a 4- a 4- 2) sin 4- sin # cos 0.
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These formulae give a and if expressed by , #, a, a

and the auxiliary quantities z, z and Q. These latter quanti

ties may be found by applying Gauss s formulae to the spheri

cal triangle considered before, as we have:

sin 4- cos \ (z
1

~)
= sin -

(l\ l
( )

sin ^ (e -f- c
()

)

sin \ sin ^ (2 2) = cos -j (f { I,} sin \ (e\ )

cos sin ^ (2 + 2)
= sin ^ (// I,)

cos ^ (V -+- )

cos ^ cos -| (2 -f- 2) = cos ^ (7/ li)
cos i (e s )

As we may always take here instead of sin \ (z z)

and sin f (Y ) the arc itself and the corresponding co

sines equal to unity, we find the following simple formulae

for computing these three auxiliary quantities:

tang 4- (z -f z) = cos 4 (e + o) tang \ (l t
l
t

)

cotangj-i/ ,
l
( )

i u - *) = i c .
-

.) -
iT,v-^.r

tang 4- 9= tang .} (e +- e ) sin | ( + .2).

The formulae () can be rendered more convenient for

computation by the introduction of an auxiliary angle or we

may use instead of them a different system of formulae de

rived from Gauss s equations. For we arrive at the for

mulae (a) if we apply the three fundamental formulae of

spherical trigonometry to a triangle, whose sides are 90 rV,

90 and 0, whilst the angles opposite the two first sides

are respectively + a -f- z and 180 a -j- z . If we

now apply to the same triangle Gauss s formulae and denote

the third angle by c, a -+-a-+-z by A and a -\-a z by A,

we find:

cos (90 4- S ) cos (X -I- c)
= cos J [90 -h &amp;lt;? H- 0] cos %A

cos (90 -I- S ) sin | (4 + c)
= cos 4- [90 4- 8 0] sin 4 4

(ft)

sin 4 (90 4- 5 ) cos $ (A c)
= sin [90 -f- &amp;lt;? + 0] cos .4

sin | (90 + &amp;lt;? ) sin (4 c)
= sin 4- [90 4- S 0] sin ^ A.

As it is even more accurate to find the difference A A

instead of the quantity A itself, we multiply the first of the

equations (a) by cos A
,

the second by sin A and subtract

them, then we multiply the first equation by sin A, the se

cond by cos A and add the products. We find thus:

cos &amp;lt;? sin (A
1

A)= cos 8 sin A sin [tang S -f- tang cos A]

cos S cos (A
1

A)= cos S cos 8 cos A sin [tang S -+ tang cos ^L],

hence :

sin ^4 sin [tang S -f- tang ^ &amp;lt;9 cos 4]-
1 coi 4 sin [teng * -H tang * cos 4]
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and from Gauss s equations we find:

cos 4- c. . sin \ (S
1

)
= sin } cos ^ (A

1

-h

COS T}
C . COS ? (S S)= COS 4 COS Y (A -

If we put therefore:

p= sin (9 [tang d + tang | cos .4]

we have:

p sin J.

tang (^4 A)=-1

1 p cos ^

and:

By the formulae (A), (5) and (C) we are enabled to

compute rigorously the right ascension and declination of a star

for the time 1750 -+- t
,
when the right ascension and decli

nation for the time 1750 -+- t are given.

Example. The right ascension and declination of a Ursae

minoris at the beginning of the year 1755 is:

= 10 55 44&quot;. 955

and #=87 59 41&quot;. 12.

If we wish to compute from this the place referred to

the equator and the equinox of 1850, we have first:

I,
= 4 11&quot;. 8756 /

,

= 1 23 56&quot;. 3541

a= 0&quot;. 8897 = 15&quot;.2656

o
= 23 28 18&quot;. 0002 e = 23 28 18&quot;. 0984.

With this we find from the formulae (A):
I (z H- -)

= o 36 34&quot;. 314 J
(z z)= 10&quot;. 6286

hence:

z= 36 23&quot;. 685

2 =0 36 44&quot;. 943
and:

= 31 45&quot;. 600
therefore:

A=a + a + z = ll Q 32 9&quot;. 530.

If we compute then the values of A A and d from

the formulae (#) and (C), we find:

log/; = 9,4214471
and :

A A = 4 4 17&quot;. 710,
J-
(? S)

= 1 5 26&quot;. 780
hence:

4 =153G 27&quot;. 240

and at last:

=
16&amp;lt;&amp;gt; 12 56&quot;. 917

S = 88 30 34 . 680.
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4. As the point of intersection of the equator and the

ecliptic has an annual retrograde motion of 50&quot;. 2 on the lat

ter, the pole of the ecliptic describes in the course of time

a small circle around the pole of the ecliptic, whose radius

is equal to the obliquity of the ecliptic*). The pole of the

equator coincides therefore with different points of the ce

lestial sphere or different stars will be in its neigbourhood
at different times. At present the extreme star in the tail of the

Lesser Bear ( Ursae minoris) is of all the bright stars nearest

to the north-pole and is called therefore the pole-star. This

star, whose declination is at present 88f ,
will approach still

nearer to te pole, until its right ascension, which at present

is 17, has increased to 90. Then the declination will reach

its maximum 89 32 and begin to decrease, because the pre

cession in declination of stars whose right ascension lies in

the second quadrant, is negative.

In order to find the place of the pole for any time
,

we must consider the spherical triangle between the pole of

the ecliptic at a certain time t and the poles of the equator

P and P at the times t and t. If we denote the right ascen

sion and declination of the pole at the time t referred to the

equator and the equinox at the time t(n by a and
&amp;lt;?,

and the

obliquity of the ecliptic at the times f and t by s and ?,

we have the sides P P = 90&quot; J, EP= ,
E P = s

,
the

angle at P= 90 -{- a and the angle at E equal to the gene
ral precession in the interval of time t 1

;
we have there

fore according to the fundamental formulae of spherical tri

gonometry :

cos 8 sin = sin e cos e cos I cos e sin

cos 8 cos a= sin e sin I

sin S= sin e sin e cos I -+- cos cos .

This computation does not require any great accuracy,

as we wish to find the place of the pole only approximately

and although the variation of the obliquity of the ecliptic

for short intervals of time is proportional to the time, we

may take s = and get simply :

tang a= cos e tang ^ I

*) This radius is strictly speaking not constant, but equal to the actually

existing obliquity of the ecliptic.
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and:
sin sin I

cos o =
cos a

Though a is found by means of a tangent, we find nev

ertheless the value of a without ambiguity, as it must satisfy

the condition, that cos a and cos I have the same sign.

If we wish to find for instance the place of the pole for

the year 14000 but referred to the equinox of 1850, we have

the general precession for 12150 years equal to about 174,
hence we have:

= 27316 and d= H-43 7 .

This agrees nearly with the place of a Lyrae, whose

right ascension and declination for 1850 is:

a= 277&quot; 58 and = + 38 39 .

Hence about the year 14000 this star will be the pole-star.

On account of the change of the declination by the pre

cession stars will rise above the horizon of a place, which

before were always invisible, while other stars now for in

stance visible at a place in the northern hemisphere, will move

so far south of the equator that they will no longer rise at

this place. Likewise stars, which now always remain above

the horizon of the place, will begin to rise and set, while

other stars will move so far north of the equator that they

become circumpolar stars. The precession changes therefore

essentially the aspect of the celestial sphere at any place on

the earth after long intervals of time.

The latest tables of the sun give the length of the si

dereal year, that is, the time, in which the sun describes

exactly 360 of the celestial sphere or in which it returns to

same fixed star, equal to 365 days 6 hours 9 minutes and

9 s
. 35 or to 365.2563582 mean days. As the points of the

equinoxes have a retrograde motion, opposite to the direction

in which the sun is moving, the time in which the sun re

turns to the same equinox or the tropical year must be shorter

than the sidereal year by the time in which the sun moves

through the small arc equal to the annual precession. But

we have for 1850 /= 50&quot;. 2235 and as the mean motion of

the sun is 59 8&quot;. 33, we find for this time 0.014154 of a day,

hence the length of the tropical year equal to 365.242204
9
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days. As the precession is variable and the annual increase

amounts to 0&quot;. 0002442966, the tropical year is also variable

and the annual change equal to 0.000000068848 of a day. If

we express the decimals in hours, minutes and seconds, we

find the length of the tropical year equal to:

365 days 5& 48 46 . 42 . 00595 (t 1800).

II. THE NUTATION.

5. Thus far we have neglected the periodical change
of the equator with respect to the ecliptic, which, as was

stated before, consists of a periodical motion of the point of

intersection of the equator and the ecliptic on the latter as

well as in a periodical change of the obliquity of the ecliptic.

The point in which the equator would intersect the ecliptic,

if there were no nutation, but only the slow changes consid

ered before were taking place, is called the mean equinox

and the obliquity of the ecliptic, which would then occur,

the mean obliquity of the ecliptic. The point however, in

which the equator really intersects the ecliptic at any time

is called the apparent equinox while the actual angle between

the equator and the ecliptic at any time is called the apparent

obliquity of the ecliptic.

The expressions for the equation of the points of the

equinoxes and the nutation of the obliquity are according
to the latest determinations of Peters in his work entitled

,,Numerus constans nutationis&quot; :

A A= 17&quot;. 2405 sin O + 0&quot;. 2073 sin 2 O
-

1&quot;. 2692 sin 2 O 0&quot; . 2041 sin 2 (

4- 0&quot; . 1279 sin (0 P) 0&quot;. 0213 sin (0 4- P)

4- 0&quot;.0677 sin (([ P ) (A)

Ae= 4- 9&quot;. 2231 cos $1 0&quot; -0897 cos 2 Jl

-h 0&quot; . 5509 cos 2 4- 0&quot; . 0886 cos 2 ([

4- 0&quot;.0093cos(04-P),

where $1 is the longitude of the ascending node of the moon s

orbit, and (L are the longitudes of the sun and of the

moon and P and P are the longitudes of the perihelion of

the sun and of the perigee of the moon. The expressions
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given above are true for 1800, but the coefficients are a

little variable with the time and we have for 1900:

A A 17&quot; . 2577 sin D -+- 0&quot;. 2073 sin 2 ft

1&quot; . 2693 sin 2 O 0&quot;. 2041 sin 2 (C

-h 0&quot;. 1275 sin (O P) 0&quot;.0213 sin

4- 0&quot;. 0677 sin ((CP )

A = -h 9&quot;. 2240 cos 41 0&quot;. 0896 cos 2 SI

H- 0&quot; . 5506 cos 2 -h 0&quot; . 0885 cos 2 (

-h 0&quot; . 0092 cos (0 -h P).

In order to find the changes of the right ascensions and

declinations of the stars, arising from this, we must observe,

that we have :

da , da

and : ()

But we have according to the differential formulae in

No. 11 of Section I, if we substitute instead of cos ft sin 7;

and cos ft cos
i]

their expressions in terms of
&amp;lt;*,

8 and :

rf &amp;lt;*&amp;lt;?

--TJ
= cos -f- sm e tang o sin a y

= cos a sm e
a/. a A

rfa rf^

7- = cos a tang o --= sm
,

C/ &amp;lt;/

from which we find by differentiating:

( 32 )
= sin

2
[-5-

sin 2 a -h cotang e cos a tang -f- sin 2 tang$
2

]d r* /

(
J
= sin [cos a 2

cotang s tang sin a -+- tang 8* cos 2]

(-~\ = [% sin 2 H- sin 2 a tang ^ 2
]

f --

-;, 2 J
= sin f

2
sin a [cotang -f- tang S sin

]

f
-

,

J
= sin e cos a [cotang -h sin a tang S]

(v )
= cos a 2

tang $.
c?

2 /

If we substitute these expressions in the equations (a)

and introduce instead of A A and A their values given be

fore by the equations (4) and take for the mean obliquity

of the ecliptic at the beginning of the year 1800= 23 27 54&quot;. 2,

we find the terms of the first order as follows :

9*
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= 15&quot;. 8148 sinO [6&quot;.
8650 sinO sin a -h 9&quot;. 2231 cosO cos a] tang 5

-+- 0&quot; . 1 902 sin 2O+ [0&quot;.
0825 sin2Q sin +0&quot;. 0807 cos2^ cosaj tang S

-
1

&quot;

. 1 642 sin20- [0&quot;.
5054 sin 20 sin +0&quot;. 5509 cos20 cos] tan- (V

-
0&quot;.1872sin2([-[0&quot;.0813sin2((sin+0&quot;.0886cos2([cos]tang^

-
0&quot;.0195sin(04-P)

-
[0&quot;.

0085 sin(0+ P) sin + 0&quot;. 0093 cos (0+P) cos
] tang S (B]

4- [0&quot;.
0621 4- 0&quot;.0270 sin tang S] sin (( P )

-h
[0&quot; .11734-0&quot;. 0509 sin a tang &amp;lt;?]

sin (0 P),

&amp;lt;? (?= G&quot;. 8650 sin O cos a 4- 9&quot;. 2231 cos O sin a

H- 0&quot;.OS25 sin 2 ^ cos a 0&quot;.0897 cos 2 f} sin

-
0&quot; . 5054 sin 2 cos 4- 0&quot; . 5509 cos 2 sin (C)

-
0&quot;. 0813 sin 2 ([ cos a H- 0&quot; . 0886 cos 2 ([ sin

-
0&quot; . 0085 sin (0 H- P) cos a -4- 0&quot; . 0093 cos (0 4- P) sin

4- 0&quot;. 0270 cos sin ((TP )

4- 0&quot; . 0509 cos a sin (0 P).

These expressions are true for 1800; for 1900 they are

a little different, but the change is only of some amount for

the first terms depending on the moon s node. These are

for 1900:

in a a: -
15&quot;.8321 sin^ -[6&quot;.S683 sin } sin a+9&quot;.2240 cos O cos a] tang S

inS :
- 6^8683 sinO cos a 4- 9&quot;. 2240 cos 1 sin a.

Of the terms of the second order only those are of

any amount, which arise from the greatest terms in A A and

AC. If we put for the sake of brevity:

Ae= 9&quot; . 2231 cosO = cos }

and - sin s A A= 6&quot; .8650 sin ft = b sin $1 ,

these terms give in right ascension:

a =-- sin 2 a [tang S 2
-+- ^] -+ tang cos a cotang s

4- [ cotang e sin a tang S-\- tang d 2 cos 2 a 4- 1 cos 2 a]
- sin 2 ft

tang $
2
sin 2 a 4-

-^r-
tangdcosacotge 4- -~ sin2 a! cos

2i&quot;)

and in declination:

a a

j .&quot;.:*.-.
cosz( tango sin cotang e

o o / 4

[tango^ sin 2 a 4- 2 cotang s cos a] sin 2

U - 4--o cos2J tango&quot;
-- sin a cotang e cos

Those terms which are independent of &amp;lt;O change merely
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the mean place of the stars and therefore may be neglected.
Another part, namely:

~

and

sin 2
~

f
-

cotang e sin a sin 2 ,Q -f- cotang s cos a cos 2 ,Q J tang

-
cotang s sin 2

&quot;)
cos a -f- cotang E sin a cos

can be united with the similar terms multiplied by sin 2O
and cos 2H of the first order, which then become equal to :

in right ascension

and in declination
(/&amp;gt;)

-h 0&quot; . 0822 sin 2 f\ cos 0&quot; . 0896 cos 2^ sin .

The remaining terms of the second order are as follows:

in right ascension

H- 0&quot;. 0001 535 [tang &amp;lt;?

2
-f- ]

sin 2 H cos 2

-
0&quot;. 0001 60 [tang &amp;lt;?

2
-+- j] cos 2 O sin 2

and in declination (^)
-

0&quot; . 0000768 tang 8 sin 2 a sin 2 O
-

[0&quot;
. 000023 -f- 0&quot; . 000080 cos 2 a] tang 8 cos 2O

But as the first terms amount to s
. 01 only when the

declination is 88 10 and as the others equal 0&quot;.01 only when
the declination is 89 26

, they are even in the immediate

neighbourhood of the pole of little influence and can be ne

glected except for stars very near the pole.

6. We shall hereafter use the changes of the expres
sions (E) and (C) produced by a change of the constant of

nutation, that is, of the coefficient of cos ,Q in the nutation

of obliquity. These are different for the terms of the lunar

and solar nutation. For in the formula of the nutation as

given by theory all terms of the lunar nutation are multi

plied by a factor N which depends on the moments of in

ertia of the earth as well as on the mass and the mean motion

of the moon, while the terms of the solar nutation are mul

tiplied by a similar factor, which is the same function of the

moments of inertia of the earth and of the mass and mean
motion of the sun. But as it is impossible to compute the

moments of inertia of the earth, the numerical values of N
and JV must be determined from observations. Now the co-
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efficient of the term of the nutation of obliquity, which is

multiplied by sinO, is equal to 0. 765428 IV . If we take

this equal to 9&quot;. 2231 (1-H), where 9&quot;. 2231 is the value of

the constant of nutation as it follows from the observations,

while 9&quot;. 2231 i is its correction, we have therefore:

0.765428 N = 9&quot;. 2231(1 + 0.

But the lunisolar precession depends on the same quan
tities N and N and the value determined from observations

(50&quot;.
36354 for 1800) gives the following equation between

N and IV :

17 .469345 = N-t- 0. 991988 JV,

from which we get in connection with the former equation:

N= 5. 516287 (1 2 16687 i).

Therefore if we take the constant of nutation equal to

9&quot;. 2231 (1 -+- i) we must multiply all terms of the lunar

nutation by 1 -f- i and all terms of the solar nutation by
1 2. 16687 i. Taking therefore 9&quot;. 2235 i = dv, we have:

; _ j
1.8702 sinn+ 0.0225 sin2O -0.0221 sin 2 (1+0.0073 sin(([-P

)jd^ ~t -4- 0.2981 sin 2 0.0300 sin (Q P)+ 0.0050 sin (Q -+- P) i

&amp;lt;/A*=[cosO 0.0097 cos 2^-1-0.0096 cos 2 ([ 0.1294 cos2Q
0.0022 cos (0-hP)] dv

and from this we find in the same way as in No. 5:

^.~_a)_ _i.7t56sinO [0.7445 sin } sin H-1 0000 cosO cos ] tangdv

-+- 0.0206 sin2^+ [0.0090 sin2^ snuH-0.0097 cos2~} cosa] tang

0.0203 sin 2 (L [0.0088 sin 2 ([sin -+0.0096cos2 ([ cos]tang&amp;lt;?

-h 0.0067 sin ((( P ) -h [0.0029 sin (([ P ) sin a } tang 8

-4-0.2735 sin20-f-[0.1187sin20sina+0.1294cos20 cosa] tang&amp;lt;?

0.0275 sin (0 P) [0.01 19 sin (0 P) sin jtangc?

4- 0.0046 sin (0 -f- P) H- [0.0020 sin (Q+P) sin a H-

H- 0.0022 cos (0-hP) cosa] tang 8

^~^= 0.7445 sinO cos a -hi.0000 cosO sin a
dv

-i- 0.0090 sin 2^^ cos a 0.0097 cos2O sin a

0.0088 sin 2 ([ cos a + 0.0096 cos 2 ( sin

-hO.0029 sin ((I P ) cos a

H-0.1187sin20cos 0.1294 cos 2 0sin
0.01 19 sin(0 P)cos

-h 0.0020 sin (0 H-P ) sin 0.0022 cos (0 -h P) sin .

7. In order to compute the nutation in right ascension

and declination it is most convenient to find the values of

A^ and A* from the formulae (4) and (AJ and to compute
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the numerical values of the differential coefficients -^L -A etc.
Cl A d

But the labor of computing formulae (J?) and (C) has been

greatly reduced by the construction of tables. First the

terms :

-15&quot;.82sinO = c and 1&quot;. 16 sin 2 Q = g

have been brought in tables whose arguments are ft and 2 0.

The several terms of the nutation in right ascension

multiplied by tang 5 are of the following form:

a cos ft cos a -+- b sin ft sin a= A [h cos ft cos a -+- sin ft sin a].

Now any expression of this form may be reduced to

the following form:

a: cos [ft a-\-y],

For if we develop the latter expression and compare it

with the former, we find the following equations for determin

ing x and y:

A h cos ft
== x [cos ft cos y sin ft sin y]

A sin ft
= x [sin ft cos y -+- cos ft sin #]

from which we find:

x*=A*[l(l ^ 2
) cos /?

2
]

and: (1 ft) sin ft cos ff

where x and t/ are always real. If we have now tables for

x and
?/,

whose argument is /9, we find the term of the nu

tation in right ascension, multiplied by tang d by computing:
x cos [ft -\- y a]

while :
(c),

gives the term of the nutation in declination depending cos
fi.

For as these terms have the form:

A
[

h cos ft sin -f- sin ft cos a] ,

we find taking it equal to x sin (fi--y ) the same equations

(6) for determining x and y.

Such tables have been computed by Nicolai and are gi

ven in the collection of tables by Warnstorff, mentioned be

fore. These give besides the quantity c the quantities log b

and B with the argument O, and with these we find the

terms of the right ascension depending on cos 1 and sin O
by computing:

c b tang S cos (ft -f- B a)
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and the corresponding terms of the decimation by computing:
- b sin GO + B a) (&amp;lt;0

This part of the nutation together with the small terms

depending on 2O, 2 ([ and d P
,

is the lunar nutation.

A second table gives the quantities #, log f and F with

the argument 20, by which we find the terms depending on

2O, which for right ascension are:

g /tang S cos [2 Q -+- F a]

and for declination:
(e)

This part of the nutation together with the small terms

depending on 0-f-P and P is the solar nutation.

No separate tables have been computed for the small

terms depending on 2 (L
,
2 O and -f- P. For these may

be found from the tables of the solar nutation, using instead

of 20 as argument successively 2d, 180-f-2,O (because these

terms have the opposite sign) and 0-f-P, and multiplying
the values obtained according to the equations (e) respectively

by | , 3

6
~ and i

,
as these fractions express approximately the

ratio of the coefficients of these terms to that of the solar

nutation.

The form of the terms multiplied by (I P and P
is different, but analogous to the annual precession in right

ascension and declination; they are therefore obtained by

multiplying the annual precession in right ascension and de

cimation by ji^ sin
(&amp;lt;L

P ) and ^ sin (0 P).

8. If we consider only the largest term of the nutation

we can render its effect very plain. We have then:

A&amp;gt;1
= 17&quot;. 25 sin O,

A = -f- 9&quot;.22cosl,

or rather according to theory:

sineA*= 10&quot;. 05 cos 2 f. sin O,
Ae= 10&quot;. 05 cos e. cos Jl-

Now the pole of the equator on account of the luni-

solar precession describes a small circle, whose radius is
,

about the pole of the ecliptic. If we imagine now a plane

tangent to the mean pole at any time and in it a system of

axes at right angles to each other so that the axis of x is

tangent to the circle of latitude, we find the co-ordinates of
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the apparent pole (affected by nutation) y = sin s A^? X=&B
and we have therefore according to the expressions given

above the following equation:

?/

2 = e2
. cos 2 2

C

~-^r x*
,

where C= 10&quot;. 05.
COS

2

The apparent pole describes therefore an ellipse around

the mean pole, whose semi-major axis is C cos e = 9&quot;. 22, and

whose semi-conjugate axis is C cos 2 e = 6&quot;. 86. This ellipse

is called the ellipse of nutation. In order to find the place

of the pole on the circumference of this ellipse, we imagine
a circle described about its centre with the semi-major axis

as radius. Then it is obvious, that a radius of this circle

must move through it in a time equal to the period of the

revolution of the moon s nodes with uniform and retrograde

motion*), so that it coincides with the side of the major axis

nearest to the ecliptic, when the ascending node of the moon s

orbit coincides with the vernal equinox. If we now let fall

from the extremity of this radius a line perpendicular to the

major axis, the point, in which this line intersects the cir

cumference of the ellipse, gives us the place of the pole.

*) As the motion of the moon s nodes on the ecliptic is retrograde.



THIRD SECTION.

CORRECTIONS OF THE OBSERVATIONS ARISING FROM THE
POSITION OF THE OBSERVER ON THE SURFACE OF THE
EARTH AND FROM CERTAIN PROPERTIES OF THE LIGHT.

The astronomical tables and ephemerides give always the

places of the heavenly bodies as they appear from the centre

of the earth. For stars at an infinite distance this place

agrees with the place observed from any point on the surface

of the earth. But when the distance of the body has a finite

ratio to the radius of the earth, the place of the body
seen from the centre must differ from the place seen from

any point on the surface. If we wish therefore to compare

any observed place with such tables, we must have means

by which we can reduce the observed place to the place

which we should have seen from the centre of the earth.

And conversely if we wish to employ the observed place

with respect to the horizon in connection for instance with

its known position with respect to the equator for the com

putation of other quantities, we must use the apparent place

seen from the place of observation, and hence we must

convert the place seen from the centre
,
which is taken from

the ephemeris, into the apparent place.

The angle at the object between the two lines drawn from

the centre of the earth to the body and to the place at the sur

face is called the parallax of the body. We need therefore

means, by which we can find the parallax of a body at any
time and at any place on the surface of the earth.

Our earth is surrounded by an atmosphere, which has

the property of refracting the light. We therefore do not

see the heavenly bodies in their true places but in the di

rection which the ray of light after being refracted in the
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atmosphere has at the moment, when it reaches the eye of

the observer. The angle between this direction and that,

in which the star would be seen if there was no atmosphere,

is called the refraction. In order therefore to find from ob

servations the true places of the heavenly bodies, we must

have means to determine the refraction for any part of the

sphere and any state of the atmosphere.

If the earth had no proper motion or if the velocity of

light were infinitely greater than that of the earth, the latter

would have no effect upon the apparent place of a star. But

as the velocity of the light has a finite ratio to the velocity

of the earth, an observer on the earth sees all stars a little

ahead of their true places in the direction in which the earth

is moving. This small change of the places of the stars

caused by the velocities of the earth and of light, is called

the aberration. In order therefore to find the true places

of the heavenly bodies from observations, we must have

means, to correct the observed places for aberration.

I. THE PARALLAX.

1. The earth is no perfect sphere, but an oblate spheroid

that is a spheroid generated by the revolution of an ellipse

on its conjugate axis. If a denotes the semi -major axis, b

the semi-minor axis of such a spheroid, and a is their dif

ference expressed in parts of the semi-major axis, we have:

a_b _ l _b_
a a

If then is the excentricity of the generating ellipse or

of the ellipse, in which a plane passing through the minor

axis intersects the surface of the spheroid, also expressed in

parts of the semi-major axis, we have:

therefore: = V\ e
2

and =1 ^l e

likewise : = ]/% a
2

.
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The ratio - is for the earth according to BesseFs in-

vestigations:

&quot;

g^g ; /
1

^ ^

and expressed in toises:

a= 3272077. 14 log a= 6. 5148235

6=3201139.33 log b = 6. 5133693.

However in astronomy we de not use the toise as unit

but the semi- major axis of the earth s orbit. If we denote

then by 71 the angle at the sun subtended by the equatoreal
radius of the earth and by R the semi -major axis of the

earth s orbit or the mean distance of the earth from the sun,
we have:

a= R sin n

&quot;
=

2^265

The angle n or the equatoreal horizontal parallax of the

sun is according to Encke equal to:

8&quot;. 57116.

It is the angle at the sun subtended by the radius of a

place on the equator of the earth when the sun at this place
is rising or setting.

In order to compute the parallax of a body for any
at the surface of the earth, we must refer the place

spheroidal earth to the centre by co-ordinates. As the

place

on the

Fig. 3. first co-ordinate we use

the sidereal time or the

angle, which a plane pas

sing through the place of

observation andthe minor

axis *) makes with the

plane passing through the

same axis and the point
of the vernal equinox. If

then OA C Fig. 3 repre
sents the plane through

*) This plane is the plane of the meridian, as it passes through the

poles and the zenith of the place of observation.
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the axis and the place of observation, we must further know
the distance A = o from the centre of the earth and the

angle AOC, which is called the geocentric latitude. But these

quantities can always be computed from the latitude ANC
(or the angle which the horizon of A makes with the axis

of the earth or which the normal line AN at the place of
observation makes with the equator) and from the two axes
of the spheroid.

For if x and y are the co-ordinates of A with respect
to the centre 0, the axes of the abscissae and ordinates beino-

OC and OB, we have the following equation^ as A is a point
of an ellipse, whose semi -major and semi -minor axes are a
and 6:

fl&amp;gt;Hv6 1 -ra*6.
Now we have also, if we denote the geocentric latitude

by &amp;lt;/) :

, y

and also : tang y=
dy

because the latitude y is the angle between the normal line

at A and the axis of the abscissae. As we have then from
the differential equation of the ellipse:

x a&quot;

1

dy
we find the following equation between

r/ and
r/&amp;gt;

:

tang tp

} =
tang &amp;lt;p (a).

Ill order to compute Q we have:

COS
&amp;lt;p

and as we obtain from the equation of the ellipse:

we find:

_ _= a
cos y

1/1 -h tang y tangy cos y cos (y 90)

If therefore the latitude y of a place is given, we can

compute by these formulae the geocentric latitude
(f&amp;gt;

and the
radius o.
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For the co-ordinates x and y we easily get the following

formulae, which will be used afterwards:

_ a cos cp

J/cVs y
2 -Kl ) sin

7&amp;gt;

2

a cos 90

and
6
2

... ^
y x tang y = x -j tang 90

= .r (I *) tang 9?

From the formula (a) we can develop y in a series

progressing according to the sines of the multiples of y, for

we obtain by the formula (16) in No. 11 of the introduction:

or taking
a b _
a-+- b

~

we find:
2

sin 4 y etc.

If we compute the numerical values of the coefficients

from the values of the two axes given above and multiply

them by 206265 in order to find them in seconds, we get:

(p
=

y)
11 30&quot;. 65 sin 2 yH-1&quot;. 16 sin 49?... (&amp;lt;?),

from which we find for instance for the latitude of Berlin

&amp;lt;f

.== 52&quot; 30 16&quot;.

y&amp;gt;

= 52 19 8&quot;. 3.

Although Q itself cannot be developed into an equally

elegant series, we can find one for log *). For we get

from formula (6):

cos o&amp;gt;

2
1 H 17 tang o&amp;gt;

2

L J

If we substitute here for cos
c//

2
its value

a 4

a* -f- 6
4
tang y

2

*) Encke in the Berliner Jahrbuch fur 1852 pag 326. He gives also

tables, from which the values of 9? and log Q may be found for any latitude.
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we find:

a 4 cos a&amp;gt;

2 4- b* sin cp
2

+ 6

-

a 2
-f- 6

-

-+- (a
2

6
2
) cos 2 ip

= (a
2
4- 6

2
)
2 H- (a

2
6

j

)
2 + 2 (a

2 4- 6
2
) (

2
6
2
) cos 2 ?

(a -h 6)
2 4- (a 6)

2 4- 2 (a 4- b) (a 6) cos 2 y
hence :

_h
,^

2-6 2

(o+ft) r./a 6r./a 6\ 2 _a i HI
^&quot;*&quot;(&quot; ~~r) + 2 T- cos 2 OP P

L Va -h It/ a -+- b
T

_\

If we write this formula in a logarithmic form and de

velop the logarithms of the square roots according to for

mula (15) in No. 11 of the introduction into series progress

ing according to the cosines of the multiples of 2
y-,

we find :

a a+6 2

,

U 2
6
2 a b)

log hyp ?
=

log hyp
j ft

+
| a

.

2

-
62
-

^ cos 2 y

a 6\;
cos49P

6
2
\
3

- etc.

or using common logarithms and denoting the quantity
a b

a-\-b

by H, we get:

= log (a }

+
;;&quot;)

+ u\ (j ^&quot;n2
-

)

etc.

where M denotes the modulus of the common logarithms,
hence :

log if=9. 6377843.

If we compute again the numerical values of the coef

ficients and take a = 1, we find:

log q= 9 . 9992747 4-0.0007271 cos 2 y 0.0000018 cos 4
y&amp;gt;

(F)

and from this we get for instance for the latitude of Berlin:

log = 9. 9990880.
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If we know therefore the latitude of a place, we can

compute from the two series (C) and (F) the geocentric la

titude and the distance of the place from the centre of the

earth and these two quantities in connection with the sidereal

time define the position of the place with respect to the centre

of the earth at any moment. If we now imagine a system

of rectangular axes passing through the centre of the earth,

the axis of z being vertical to the plane of the equator, whilst

the axes of x and y are situated in the plane of the equator

so that the positive axis of x is directed towards the point

of the vernal equinox, the positive axis of y to the point

whose right ascension is
90&quot;,

we can express the position of

the place with respect to the centre by the following three

co-ordinates :

x= o cos 90 cos

y= $ cos y sin (6?).

2=
(&amp;gt;

sin cp

3. The plane in which the lines drawn from the centre

of the earth and from the place of observation to the centre

of the heavenly body are situated, passes through the ze

nith of the place, if we consider the earth as spherical, and

intersects therefore the celestial sphere in a vertical circle.

Hence it follows that the parallax affects only the altitude

of the heavenly bodies while their azimuth remains unchanged.
If A (Fig. 3) then represents the place of observation, Z

its zenith, S the heavenly body and the centre of the

earth, ZOS is the true zenith distance z as seen from the

centre of the earth and ZAS the apparent zenith distance z

seen from the place at the surface. Denoting then the par

allax or the angle at S equal to z z by p we have:

i C j
sin p = -^-

sin z
,

where A denotes the distance of the body from the earth,

and as p is always a very small angle except in the case

of the moon, we can always take the arc itself instead of

the sine and have :

X= -f sin z . 206265.
a

Hence the parallax is proportional to the sine of the ap

parent zenith distance. It is zero at the zenith, has its max-
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imum in the horizon and has always the effect to decrease

the altitude of the object. The maximum value for z = 90

/&amp;gt;

= 4 206265
u

is called the horizontal parallax and the quantity

/&amp;gt;

= -
206265,

where a is the radius of the earth s equator, is called the

horizontal equatoreal parallax.

Here the earth has been supposed to be a sphere; but

as it really is a spheroid, the plane of the lines drawn from

the centre of the earth and from the place of observation to

the object does not pass through the zenith of the place,

but through tlie point, in which the line from the centre of

the earth to the place intersects the celestial sphere. Hence
the parallax changes a little the azimuth of an object and

the rigorous expression of the parallax in altitude differs a little

from the expression given before.

If we imagine three axes of co-ordinates at right angles
with each other, of which the positive axis of z is directed

towards the zenith of the place, whilst the axes of x and y
are situated in the horizon, so that the positive axis of x
is directed towards the south, the positive axis of y towards

the west, the co-ordinates of the body with respect to these

axes are :

A sin z cos A
, A sin z sin A and A cos z

,

where A denotes the distance of the object from the place
and z and A are the zenith distance and azimuth seen from

the place.

The co-ordinates of the same object with respect to a

system of axes parallel to the others but passing through the

centre of the earth are:

A sin z cos A, A sin z sin A and A cos z,

where A denotes the distance of the object from the centre

and z and A are the zenith distance and the azimuth seen

from the centre. Now as the co-ordinates of the centre of

the earth with respect to the first system are:

g sin
(9? 9? ), and ^ cos (90 y&amp;gt;~)

we have the following three equations:
10
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A sin z cos A r= A sin z cos A g sin (9? 95 )

A sin 2 sin A = A sin z sin .4

A cos z = A cos 2
(&amp;gt;

cos (90 9? )&amp;gt;

or : A sin z sin (A A)= Q sin (9? 9? ) sin -4

A sin 2 cos (.4 .4)
= A sin 2 sin (9? &amp;lt;/&amp;gt;

) cos yl (a)

A cose = A cos z Q cos((f&amp;gt; 9? )-

If we multiply the first equation by sin (4 4), the

second by cos |(X A) and add the two products, we find:

A cos 2 = A cos 2 o cos (9? cp

1

).

Then putting:
cos 4- (A -+- A) .. /7N

tang y= ^-r, r^ tang (&amp;lt;f&amp;gt; 9? ), (o)
COS l \^* ^*-)

we find:

A sin 2 = A sin 2 ^ cos (cp cp ) tang y

A cos 2 = A cos 2 o cos (95 gp )

or:

A sin (2 2) = (&amp;gt;

cos (cp cp )

M r \ r ,,
cos (2 7) (A cos (2 2) = A Q cos (cp y&amp;gt;)

\

and besides if we multiply the first equation by sin | ( ss),

the second by cos J ( z) and add the products :

,
cos (cf cp

1

) cos [| (2 H- z) y]

cos y

If we divide the equations (a), (6) and (c) by A and put:

taking the radius of the earth s equator equal to unity, so

that p is the horizontal equatoreal parallax, we obtain by the

aid of formulae (12) and (13) in No. 11 of the introduction:

cos A (cp 9? ) sin A tang 4 (-4 -4) (y 9? )

,

sin A sin ^ cos { (A
1

-f- 4) ,
.-- -

*.) We have:

Substituting here for tang (95 90 ) the series

(rr-y)-4-|{Sp-- 9P )
8 ~K

we can easily deduce the expression given above.
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cos/
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(&amp;gt;

sin p cos (9? y ]

cos y

Sfsmpcos
- (p- 9? )\

2
. 0/ .

4- 4 I
- -

)
sin 2 (2 y) H- . . . .

\ cos y /

iyp A = log hyp A cos (z y)

( ) cos 2 (c y) ...
V cos y /

We have therefore neglecting quantities of the order of

sin p ((fj (f/)
which have little influence on the quantity ;

:

y= (99 9? ) cos A
hence the parallax in azimuth is:

or its rigorous expression, which must be used when z is

very small:

o sin p sin (9? cp) .

sin
/ Al Sln Z

tang (A
1

4)= -
_ cos ^

sin 2

Furthermore as:

cos
(9? tp)_ cos 4

cos y cos Jr (A
1

A) sin y

is always nearly equal to unity, the parallax in zenith dis

tance is:

2 z=
() sin p sin [z (&amp;lt;p 9? ) cos A} ,

and the rigorous equations for it are:

- sin (z z) =
(&amp;gt;

sin p sin [z (y 9? ) cos A]

cos (z 2) =1 (&amp;gt;sinpcos[2 (cp &amp;lt;f&amp;gt;)

cos -4].

Hence if the object is on the meridian, the parallax in

azimuth is zero and the parallax in zenith distance is :

z 2
&amp;lt;)

sin p sin [2 (95 9? )]-

4. In a similar way we obtain the expressions for the

parallax in right ascension and declination. The co-ordinates

of a body with respect to the earth s centre and the plane
of the equator are:

A cos 8 cos a, A cos sin a and A sin 8.

The apparent co-ordinates as they appear from the place
at the surface with respect to the same plane are:

A cos 8 cos
, A cos 8 sin and A sin 8 .

10*
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Since the co-ordinates of the place at the surface with re

spect to the centre referred to the same fundamental plane are:

^&amp;gt;

cos cp cos 0, (&amp;gt;

cos
cp

sin and
(&amp;gt;

sin cp

we have the following three equations for determining A ?

and 8 :

A cos cos = A cos 8 cos a o cos y cos

A cos d sin = A cos sin a o cos 9? sin (a)

A sin $ = A sin $ Q sin y .

If we multiply the first equation by sin
,

the second

by cos a and subtract one from the other, we find:

A cos S sin ( )
=

(&amp;gt;

cos
&amp;lt;p

sin (0 ).

But if we multiply the first equation by cos
,
the se

cond by sin a and add them, we find:

A cos cos ( a) = A cos $
(&amp;gt;

cos cp cos (0 ).

We have therefore:

,
. _ Q cos gp sin (a 6&amp;gt;)

A cos
(&amp;gt;

cos 90 cos ( )

o cos
(f&amp;gt;

.

\ ^ sin (a 6&amp;gt;)

A cos o

o cos 90
1 - ~ cos (a 0)

A cos o

or developing a a in a series
,
we find :

?-
C S

sin (,
- 8)+ }

^
rin 2 (

- 0)
A cos d VAcosd/

In all cases excepting the moon it is sufficiently accu

rate to take only the first term of the series. Taking then

the radius of the earth s equator as the unit of o and writing
in the numerator sin n as factor (where 11 is the equatoreal

parallax of the sun) in order to use the same unit in the

numerator as in the denominator, namely the semi -major
axis of the earth s orbit, we get:

,
o sin 7t cos

&amp;lt;p

sin (a 0}
a a= - . -

j
.

(JB)
A cos o

where a is the east hour angle of the object. The parallax

therefore increases the right ascensions of the stars when east

of the meridian and diminishes them on the west side of the

meridian. If the object is on the meridian, its parallax in

right ascension is zero.
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In order to find a similar formula for 6 #, we will

write in the formula for:

A cos S cos ( )

now
1 2sin|(a )

2

instead of
COS ( a),

and obtain:

A cos = A cos S
(&amp;gt;

cos
&amp;lt;p

cos (0 ) -+- 2 A cos $ sin -JS- ( )
2

.

If we here multiply and divide the last term by cos \ (a )

and make use of the formula:

A cos S sin ( )
=

Q cos
&amp;lt;p

sin
(6&amp;gt; )

we easily find:

A cos y= A cos ,?
-

f cos y
C 5

j*
-*

,gffl . ()

Introducing now the auxiliary quantities /? and
;- given

by the following equations:

/? sin y= sin
y&amp;gt;

cos
&amp;lt;p

cos [0 I ( H- )]
cos y= -

V/-J , (c)
cos -I (a )

we find from (6):

A cos 8 = A cos $ ()f3 cos /

and from the third of the equations (a):

A sin = A sin S ^ /3 sin y.

From these two equations we easily deduce the following:

A sin (S S~)
=

g ft sin (y $)

A cos (S
1

8) = A
f&amp;gt;ft

cos (y S),

or:

tang ( S) = }

or according to formula (12) in No. J 1 of the introduction:

S S= s
sin (y 8} ^ 3

sin 2 (y $) etc. ((7)

If we introduce here instead of ft its value sm9P and
sm y

write again p sin n instead of o in order to have the same

unit in the numerator as in the denominator, we find, taking

only the first term of the series:

~, o, (} sin n sin
cp

sin (y 8)

A siny
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If we further take in the second of the formulae (c)

cos i
( a) equal to unity and write instead of|( 4-),

we have the following approximate formulae for computing
the parallax in right ascension and declination :

7f(&amp;gt;cos&amp;lt;jp

!

sin (0 a)

A cos d

tang cp
tang y

cos (0 a)

&amp;gt; s O *)

A sin/

If the object has a visible disc, its apparent diameter

must change with the distance. But we have:

A sin (8 7)
= A sin (8 y)

and as the semi -diameters, as long as they are small, vary

inversely as the distances, we have:

. -.

sin (o y)

Example. 1844 Sept. 3 De Vice s comet was observed

at Rome at 20 h 41 m 38 s sidereal time and its right ascension

and declination were found as follows :

= 2 35 55&quot;. 5

?==_ IS 43 21 .6.

The logarithm of its distance from the earth was at that

time 9.27969 and we have for Rome:

y&amp;gt;

= 4142 .5

and

log ?
= 9. 99936.

The computation of the parallax is then performed as

follows :

*) If the object is on the meridian, we find :

S 8= ^ sin (y (?)
=

$ sin [z (&amp;lt;p y )],A A
hence the parallax in declination is equal to the parallax in altitude.
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in arc 310 24 . 5

2 35.9

a 52 11 . 4

tangy 9.94999 y= 55 28 . 6

cos (0 a) 9 . 78749 S= 18 43.4,

sin(6&amp;gt; ) 9. 89765,
~

y =+7412.0
n^cosy ,_ sin(y 5) 9798327

J. O^O i u /i . i

A _n9 sm&amp;lt;p

sec 8 0.02362 A
cosec y . 08413

log (a a) 1 . 44703
log

&amp;gt; _ = t ^ 54316/j

a a = + 27&quot;. 99 5 5= 34&quot;. 93

Thus the parallax increases the geocentric right ascen

sion of the comet 28&quot; . and diminishes the geocentric decli

nation 34&quot;. 9. Hence the place of the comet corrected for

parallax is:

a= 2 35 27&quot;. 5

&amp;lt;?

= IS 42 46 .7.

In order to find the parallax of a body for co-ordinates

referred to the plane of the ecliptic, it is necessary to know
the co-ordinates of the place of observation with respect to

the earth s centre referred to the same fundamental plane.

But if we convert and y into longitude and latitude ac

cording to No. 9 of the first section and if the values thus

found are I and 6, these co-ordinates are:

Q COS b COS I

(&amp;gt;

cos b sin I

(&amp;gt;

sin b

and we have the following three equations, where A
, //, A

are the apparent, A, /?, A the true longitude and latitude:

A cos /? cos A = A cos ft cos A ^ cos b cos I

A cos /? sin A = A cos ft sin 1 $ cos b sin I

A sin ft
= A sin ft

(&amp;gt;

sin 6,

from which we finally obtain similar equations as before,

namely :

-, ,,
n Q

^

cos b sin (I A)

A cos ft

tang b

^(i-i)
,

7t () sin b sin (y ft)

A sin y

& and
ff

are the right ascension and declination of that point,

in which the radius of the earth intersects the celestial sphere,
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/ and b are therefore the longitude and latitude of the same

point. If we consider the earth as a sphere, this point is

the zenith and the longitude of the point of the ecliptic

which is at the zenith is also called the nonagesimal, since

its distance from the points of the ecliptic which are rising

and setting is 90.

5. As the horizontal equatoreal parallax of the moon

or the angle whose sine is
, A being the distance of the

moon from the earth, is always between 54 and 61 minutes,

it is not sufficiently accurate to use only the first term of

the series found for the parallax in right ascension and de

cimation and we must either compute some of the higher
terms or use the rigorous formulae.

If we wish to find the parallax of the moon in right

ascension and declination for Greenwich for 1848 April 10

10h mean time, we have for this time:

a= 7&amp;gt; 43 fn 2O . 25 = 115 50 3&quot; . 75

= + 16 27 22&quot;. 9

6&amp;gt;=llh 17m QS .02 = 169 15 0&quot;.30

and the horizontal equatoreal parallax and the radius of the

moon: p= 56 57&quot;.5

R= 15 31&quot;. 3.

We have further for Greenwich:

9,
= 51 17 25&quot;. 4

log ?
= 9. 9991 134.

If we introduce the horizontal parallax p of the moon
into the two series found for a rt and &amp;lt;) j in No. 4, as

we have sin p = -
,
we find :

_ =_ 206265 P zijpi: sin (
_ a )

cos o

/

K
cos

, , A&amp;gt; cosy sin p\ i

I sin o (^e/ ;-(-... iA V cos d /

and:
, .

si s -i^nnz f&amp;gt;smop smp . .

d d= 206265- sm(y 8)
sin y
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where we must use the rigorous formula for computing the

auxiliary angle y:

. cos 4 ( )

tang y= tang &amp;lt;p r
- -.sy^

cos[&amp;lt;9 i ( -t-a)]

If we compute these formulae, we find for a a :

from the first term: 29 45&quot;. 71

second 1 1 . 47

third -_0 . 03

hence a a= ~~

29 57&quot;. 21

and for S r):

from the first term: 36 34&quot;. 21

second 20 . 91

third -_0 . 12

hence S -~3Q
r
5c) 72l~

The apparent right ascension and declination of the moon
is therefore:

= 115 20 6&quot;. 54 5 = 15 50 27&quot;. G6.

Finally we find the apparent semi -diameter:

#= 15 40&quot;. 20.

If we prefer to compute the parallax from the rigorous for

mulae, we must render them more convenient for logarithmic

computation. We had the rigorous formula for tang ( a) :

tang (-
-

)
=

,--?

C S
?! *?,?. ?.&amp;lt;

~
&amp;gt;

().
1

(&amp;gt;

cos (p sm p cos (a 0) sec a

Further from the two equations:
A sin 8 = A [sin S o sin

(p

1

sin p]
and:

A cos cos (a a) = A [cos 8 o cos y sinp cos (a &}]

we find:

tang
&amp;gt; __ [sin? g sin?/ sin/?] cos ( ) sec d

1
(&amp;gt;

cos
cp sin /? sec 8 cos (a (9)

Since we have:

A _ cos S cos ( a)

A cos $
(&amp;gt;

cos 95 sin
/&amp;gt;

cos (a (9)

we find in addition:

.
,

cos cos ( a) sec &amp;lt;?

sin /i = -- -
. 5

-- sm R (c).
1

(&amp;gt;

cos
(p smp sec o cos (a 6&amp;gt;)

If we introduce in (a), (6) and (c) the following aux

iliary quantities:

cos A = ?-
Sin ^ C S ^

;

-
cos_^-~-^

cos S

and:

sin (7= $ sin p sin y ,
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we find the following formulae which are convenient for log
arithmic computation :

*)
tang (

-
a) =

cos o sin A 2

_ sin ^ (8 C) cos % ($ H- (7) cos (a )

cos 8 sin ^ A 2

and:

.

f .4*

If we compute the values a a, 8 and K with the

data used before, we find almost exactly as before:

a = 29 57&quot;.21

= 4-15 50 27&quot;. 68

R = 15 40&quot;. 21.

We can find similar formulae for the exact computation
of the parallax in longitude and latitude and we can deduce

them immediately from the above formulae by substituting

/t
;

, /, ft ) ft, I and b in place of
, ,

&amp;lt;5

,
&amp;lt;)

,
6&amp;gt; and

cp
.

II. THE REFRACTION.

6. The rays of light from the stars do not come to us

through a vacuum but through the atmosphere of the earth.

While in a medium of uniform density, the light moves in a

straight line, but when it enters a medium of a different den

sity, the ray is bent from its original direction. If the me

dium, like our atmosphere, consists of an infinite number of

strata of different density, the ray describes a curve. But

an observer at the surface of the earth sees the object in the

direction of the tangent of this curve at the point where it

meets the eye and from this observed direction or the ap

parent place of the star he must find the true place or the

direction, which the ray of light would have, if it had

undergone no refraction. The angle between these two di

rections is called the refraction and as the curve of the ray

of light turns its concave side to the observer, the stars

appear too high on account of refraction.

We will consider the earth as a sphere, as the effect

of the spheroidal form of the earth upon the refraction is
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exceedingly small. The atmosphere we shall consider as con

sisting of concentric strata of an infinitely small thickness,

within which the density and hence the refractive power is

taken as uniform. In order to determine then the change
of the direction of the ray of light on account of the refraction

at the surface of each stratum, we must know the laws

governing the refraction of the light. These laws are as

follows :

1) If a ray of light meets the surface separating two

media of different density, and we imagine a tangent plane

at the point where the ray meets the surface, and if we draw

the normal and lay a plane through it and through the ray

of light, the ray after its refraction will continue to move
on in the same plane.

2) If we imagine the normal produced beyond the

surface, the sine of the angle between this part of the nor

mal and the ray of light before entering the medium (the

angle of incidence) has always a constant ratio to the sine

of the angle between the normal and the refracted ray of

light (the angle of refraction), as long as the density of the

two media is the same. This ratio is called the index of

refraction or refractive index.

3) If the index of refraction is given for two media
A and B and also that for two media B and (7, the index

of refraction for the two media A and C is the compound
ratio of the indices between A and B and between B and C.

4) If
/LI

is the index of refraction for two media if

the light passes from the medium A into the medium #, the

index for the same media if the light passes from the

medium B into the medium A is
f*

Now let Fig. 4 be a place at the surface of the earth,
C the centre of the earth, S the real place of a star, CJ
the normal at the point J where the ray of light SJ
meets the first stratum of the atmosphere. If we know then

the density of this first stratum, we find the direction of the

ray of light after the refraction according to the laws of

refraction and thus find a new angle of incidence for the

second stratum. If we now consider the nth stratum taking
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CJV as the line from the

centre of the earth to

the point in which the

ray of light meets this

stratum, and denoting the

angle of incidence by ,

the angle of refraction

by /&quot;,
the index of re

fraction for the vacuum
and the (n l)

th stratum

by /*, the same for the

wth stratum by #.+ we
have *) :

sin ilt : sin/n = [in+ \ . /*.

If further N is the point in which the ray of light meets

the w-f-l th
stratum, we have in the triangle JVCJV

, denoting
the lines JVC and JV C by rn and rn+l :

sin/ : sin i,,+i
= r+i : r,

and combining this formula with the one found before we get :

rn sin in fin
= rn+i sin in+ i /ta+ i.

Therefore as the product of the distance from the centre

into the index of refraction and the sine of the angle of in

cidence is constant for all strata of the atmosphere, we may
denote this product by y and we have therefore as the gene
ral law of refraction:

r . ft
. sin i= y, (a)

where r, u and i belong to the same point of the atmosphere.
For the stratum nearest to the surface of the earth the angle i

or the angle between the last tangent at the curve of the ray
of light and the normal is equal to the apparent zenith dis

tance z of the star. If we therefore denote the radius of the

earth by a, and the index of refraction for the stratum nearest

to the surface of the earth by //, we can determine / from

the following equation:

aju, sin 2 ==/. (6)

*) These indices are fractions whose numerators are greater than the de

nominators. For a stratum at the surface of the earth for instance we have
f) t AA

^=1.000294 or nearly equal to -
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If we now assume, that the thickness of the strata, within

which the density is uniform, is infinitely small, the path

of the light through the atmosphere will be a curve whose

equation we can find. Using polar co-ordinates and denoting

the angle, which any r makes with the radius CO by 0, we

easily find:
r^-tehgt. (c)
dr

The direction of the last tangent at the point where the

curve meets the eye is the apparent zenith distance, but the

true zenith distance is the angle, which the original di

rection SJ of the ray of light produced makes with the nor

mal. This c, it is true, has its vertex at a point different

from the one occupied by the eye of the observer; but as

the height of the atmosphere is small compared with the dis

tance of the heavenly bodies and the refraction itself is a

small angle, the angle f differs very little from the true ze

nith distance seen from the point 0. Even in the case of

the moon, where this difference is the greatest, it does not

amount to a second of arc, when the moon is in the horizon.

We may therefore consider the angle as the true zenith

distance.

If we now draw a tangent to the ray at the point JV, to

which the variable quantities i, r and // belong and if we
denote the angle between it and the normal CO by ,

we have:

= *+ . (rf)

Differentiating the general equation (a) written in a log
arithmic form, we find:

dr da
h cotang i.di-\- ----- =

r
fi

and from this formula in connection with the equations (c)

and (rf) we get: .,., .dp
rf = tang i ,

f
1

or eliminating tang i by the equation:

sin i y
tang i= -=== =

V 1 sin i
2 yVV 2

/
2

and substituting for y its value a u
()
sin a; we find:
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The integral of this equation taken between the limits

= and =
gives then the refraction. If we put:

we can write the equation in the following form:

I/ s z
z

(l 2 )-}-(2s s
2
)sin2

2

i /

In order to integrate this formula we must know how s

depends upon . The latter quantity depends on the density
and we know from Physics, that the quantity

2
1, which

is called the refractive power, is proportional to the density.
If we introduce now as a new variable quantity the density p,

given by the equation:

^2
_ i = co

,

where c is a constant quantity, we obtain:

do
^(1 ) sin. c .

-(l ^-Wc?.? *
2
)sin~

;

V l-i-c^J
or taking:

co co a A P \
2, hence- -^=2a(l 5-1

1 4-
c(&amp;gt;

V o /

-^ sn

The coefficient

is the square of the ratio of the index of refraction for a

stratum whose radius is r to the index for the stratum at

the surface of the earth. But as we have u= 1 at the limits

of the atmosphere, and the index of the stratum at the sur

face is
/u (} =^ ,

the ratio is, always contained between
oojy IU.Q

narrow limits. Hence as a is always a small quantity, we

may take instead of the variable factor
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its mean value between the two extreme limits 1 and 1 2

or the constant value 1 a.

If we put for brevity 1 - ^-=
?,
where w is a function

of s, to be defined hereafter, and if we change the sign of dC ,

in order that the formula will give afterwards the quantity,

which is to be added to the apparent place in order to find

the true place, we get:

(1 s) sin zdw

z
2 2 aw 4- (2s s

2
)sinz

2

or as s is always a small quantity, since the greatest value

of 5 supposing the height of the atmosphere to be 46 miles

is only 0.0115:

sin zdw

I a
]/cosz

* 2 aw -j- 2s sin z 2

a s sin z [cos z 2 2 aw] -hs 2
sin z 2 *&

[cos*
2

2aw&amp;gt;H-2ssins
2p

where already the second term, as we shall see afterwards,
is so small, that it can always be neglected. In order to

find the refraction from the above equation we must integrate
it with respect to s between the limits 5 = and 5 =

J5T,

where H denotes the height of the atmosphere.
If we now put:

w= F(s)

and introduce the new variable quantity a?, given by the fol

lowing equation:

or taking:

aF(s)

*= x -h (p (is),

we have according to Lagrange s theorem:

21.2 dx

1.2.3 rfar
5

hence
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In order to find from this the refraction, we must mul

tiply each term by
-

. = and integrate be-
!-- J/cos.?

2 4-2* sins
2

tween the limits given above. But in order to perform these

integrations, it is necessary to express w as a function of s

or to find the law, according to which the density of the

atmosphere decreases with the elevation above the surface.

7. Let p (}
and r

()
be the atmospheric pressure and the

temperature at the surface of the earth, p and T the same

quantities at the elevation x above the surface, m the ex

pansion of atmospheric air for one degree of Fahrenheit s

thermometer; then we have the following equation:

Po- ()
1 -f- WT

For if we take first a volume of air under the pressure

p ()
at the temperature T

(}
and of the density o

{)
and change

the pressure to p, while the temperature remains the same,

the density according to Mariotte s law will change to
(&amp;gt;

.

Po
If then also the temperature increases to r, the resulting den

sity will be:

p 1 -h mr

from which we get the equation above. Hence the quantity

~7f^j^~T)

or the quotient : the atmospheric pressure divided by

the density and reduced to a certain fixed temperature, is

always a constant quantity. Now if we denote by l
()
the

height of a column of air of the uniform density o and of

the temperature TO ,
which corresponds to the atmospheric

pressure p in we have, denoting the force of gravity at the

surface of the earth by &amp;lt;/

:

/ is the height which the atmosphere would have if the den

sity and temperature were uniformly the same at any elevation
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as at the surface of the earth, and if we take for TO the tem

perature of 8 Reaumur = 10 Celsius = 50 Fahrenheit, we
have according to Bessel:

1 =4226.05 toises,

equal to the mean height of the barometer at the surface of

the sea multiplied by the density of mercury relatively to

that of air.

If we ascend now in the atmosphere through dr, the

decrease of the pressure is equal to the small column of air

Qdr multiplied by the force of gravity at the distance r, hence

we have:
,

a 2
,

dp= g ^-.Q. dr,

and dividing this equation by the equation (/?) and putting

also reckoning the temperature from the temperature r
,

so

that r means the temperature minus 50 Fahrenheit we find:

d? =_/* (!_,)
Po ^o

and from the equation () we have:
(y)

-?-= (l+mr)(l 10).

Po

If we eliminate p from these two equations, we find 1 w
and hence the density expressed by s and l-^-mr. The latter

quantity is itself a function of s; but as we do not know
the law according to which the temperature decreases with

the elevation, we are obliged to adopt an hypothesis and to

try whether the refractions computed according to it are in

conformity with the observations. Thus the various theories

of refraction differ from each other by the hypothesis made
in regard to the decrease of the temperature in the atmo

sphere.

If we take the temperature as constant, we have:

-- = 1 w, hence -?- = d (1 w\
Po Po

and we find, combining this with the first of the equation (7) :

d(lw) a
,= ds,

1 w L
a

T
hence 1 w =

11
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as the constant quantity which ought to be added to the in

tegral is in this case equal to zero. This hypothesis was

adopted by Newton, but is represents so little the true state

of the atmosphere that the refractions computed according
to it differ considerably from the observed refractions.

as

If we take for \-\-mr an exponential expression e
h

we arrive at BesseFs form. We find then by the combi

nation of the two equations (? ):

d(l w) \~ a a h~]

-T
-=LT-r J*-

and integrating and determining the constant quantity so that

1 w is equal to unity when 5 = 0, we find:

instead of which we can use the approximate expression :

-*-=A .. / &quot;

1 lv = e
hl

(SI

Bessel determines the constant quantity h is such a man
ner that the computed refractions agree as nearly as possible

with the values derived from observations. But the decrease
as

of the temperature resulting from the formula 1 -\-rnr= e
h

for this value of h do not at all agree with the decrease

as observed near the surface of the earth. For we find

= =- for s = 0, and as we have also = for s = 0,
as hm ds a

we find:

dr_ 1

d r hm

at the surface of the earth. Now as m for one degree of

Fahrenheit s thermometer is . 0020243 and as h according

to Bessel is 116865.8 toises, we find ~=~^ . There
dr &quot;2ot

would be therefore a decrease of the temperature equal to

1 Fahrenheit if we ascend 237 toises, whilst the observations

show that a decrease of 1 takes place already for a change
of elevation equal to 47 toises.

Ivory therefore in his theory assumes also an exponential

expression for 1-f-mr, but determines it so that it represents
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the observed decrease of the temperature at the surface of

the earth. He takes:

1 w= e~ &quot;

,

where u is a function of s, and further:

1H- WT =1 /(l_ e )

Then we easily get from the equations (; ):

a
- ds= (lf)du + 2fe&quot;du,

and -
.9= (1 /) u -f- 2/(l e

&quot;). (*0
o

Taking r= a we find from these two equations :

dr l f

and we see that we must take f equal to -- in order to make

equal to - - -- which value represents the observations at

the surface of the earth.

Several other hypotheses have been adopted by Laplace,

Young, Lubbock and others. Here however we shall confine

ourselves to those of Bessel and Ivory, as the refractions

computed from their theories are more frequently used, and

the other theories may be treated in a similar manner.

8. If we put in equation (d) :

h 1

hi,

~
f

we have for Bessel s hypothesis:

we have therefore :

2
.

sin 2

and we find :

tfF(*)^(^
sin z \ L &

hence as:

dx&quot;

-

11
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and the general term of the differential d becomes:

where we have to put for n successively all integral numbers

beginning with zero. All these terms must then be integrated
between the limits s = and s = H, instead of which we
can use also without any sensible error the limits and oo,

as eP* is exceedingly small for 5 = H. As we have x=
when 5 = and x= GO when 5 = GO we must integrate the

different terms with respect to x between the limits and co.

All the integrals which here occur can be reduced to the

functions denoted by ifj
in No. 1 8 of the introduction and if

we apply formula (8) of that No., we find the general term

of the expression for the refraction:

(!), .___(,,_ 1) y;(n I) ...

or denoting the refraction by &amp;lt;)

,
we find:

etc.

and as we have :

we can write this in the following form :

*/3

9. In Ivory s hypothesis we have :

w= .F (it)
= 1 e~ &quot;

,
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and taking = :

If we introduce here the new variable #, given by the

equation :

the differential expression for the refraction according to

equation (g) in No. 6 becomes:

, ,

a
1

/

l/ cosz 2 H--
P

where x= u -
(1 e-) /M + 2/(l e ).

Taking again:

F(^) = l e~ x

&amp;lt;p
Or)= -

.

a/9
a (1

-
e-*) +/* - 2/(l

- e),
bin 2

we find from the formula (/&):

. .

rfa: 1.2 c/^r
2

As the third term may be already neglected, we have:

e-,+ !M^::J = e &quot; + -5/1
[2e *_. .]+/ (1_ I)e--2/t2e- -- e-].

t 3? s in z

If we multiply these terms by -- - and*
!--,/ 2

2 sin, 2

I/
cos s -)-

------
a;

^

integrate them with respect to x between the limits and GO,

we find again according to the formulae (9) and 10) in No. 8

of the introduction:

(0

where 7*= cotang 2 l--

The higher terms are complicated, but already the next

term is so small on account of the numerical values of a/3
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and
/*

that it can be neglected. For we have for the horizon,
where the term is the greatest, putting 2 /*/?=&amp;lt;/
*

(&amp;lt;(XG

If we divide each term by y -^
and integrate it between

the limits s and oc we find, applying the formulae for
/&quot;Q)?

jT() etc. given in No. 16 of the introduction:

1 a ~2 J/f
^f* ~ *f9^ ~

1) + y
2

(1
- 2 J/2 + 3 |/3)]

and if we substitute here the numerical values, which are

given in No. 10, we find that the greatest value of this term,
which occurs in the horizon, is 2&quot;. 11. The next term gives

only 0&quot;. 18. In the differential equation (#) in No. 6 we have

also neglected the second term, as it is small and amounts

to about half a second in the horizon. As the sign of

the latter term is negative, we shall not commit an error

greater than 1&quot;. 5 if we compute the horizontal refraction

from formula (/).

10. The numerical computation of the refraction from

formula (K) or (/) can be made without any difficulty, as the

values of the functions ip can be taken from the tables or

can be computed by the methods given in No. 17 of the in

troduction.

According to Bessel the constant quantity at the tem

perature of 50 Fahrenheit and for the height of the baro

meter of 29 . 6 English inches
,
reduced to the normal tem

perature, is

= 57&quot;. 4994, hence log -,-&quot;

= 1.759785
1 ct

and /* = 116865. 8 toises.

As we have /
()

= 4226.05 toises, we find, if we take

according to Bessel for a the radius of curvature for Green
wich to 3269805 toises :

^= 745 . 747, hence log
--

[/2 /?
= 3 . 347295

If we wish to compute for instance the refraction for the

zenith distance 80, we have in this case log 7\ = 0.53210

etc. and we find:
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According to Ivory we find the horizontal refraction:

SZ=
1 - a

V/7f

&quot;[/I

U +^ 0/2 &quot;

1}
~/(2 1/2

~
l)]

= 33 58&quot;,

whilst the observations give 34
50&quot;,

a value which is nearly
the mean of the two.

As long as the zenith distance is not too great, it is not

necessary to use the rigorous formulae
(/e) and (/), but it is more

convenient, to develop them into series. If we substitute in

formula (/) for i/^(l) and i//(2) the series found in No. 17

of the introduction and observe that - - = 1 -4- cote: s
2
, we

sins 2

find: *)

105 n \ /15 105 a 1575 n

or if we substitute the numerical values:

^-=[1.759845] tang^- [8.821943] tang2
3+ [6.383727] tangz

5 -
[4.180257] tang^

7
,

where the figures enclosed in brackets are logarithms.

Furthermore the terms multiplied by f give:

75
7

1785
9

46305 M j&quot; &quot;

or
(^,)

-
j
[5.506187] tangs;

5 - [3.714510] tang2
7

-f[1.901468]tang2
9
-[9.018568]tang2

n
|

For 75 we find from the series da = 211&quot;. 39 and the

part depending on f equal to 0&quot;. 02, hence the refraction

equal to 211&quot;. 37 in conformity with the rigorous formula.

*
) For we get :

P
/
2/3v- (l) = tang.r tangz

3
-f- tangz

5

tangz
7

105
H-

pi
tang z

1 ^ 1
**

2* J/27 V (2) = tang z ^ tang a 3 -h^ 2 tangz^
g^

3 tang z
1

105

Ivory gives in the Phil. Transactions for 1823 another series, which can be

used for all zenith distances.
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11. The above formulae give the refraction for any ze

nith distance but only for a certain density of the air, namely

that, which occurs when the temperature is 50 Fahren

heit and the height of the barometer 29 . 6 English inches.

The refraction which belongs to this normal state of the

atmosphere is called the mean refraction. In order to find

from this the refraction for any other temperature r and height
of the barometer 6, we must examine, how the refraction is

changed, when the density of the atmosphere or the stand

of the meteorological instruments
, upon which it depends,

changes. Let s be the expansion of air for one degree
of Fahrenheit s thermometer, for which Bessel deduced the

following value:

= 0.0020243

from astronomical observations. If we take now a volume

of air at the temperature of 50 as unit, the same volume
at the temperature r will be 1-M (r 50), hence the density
of the air when the thermometer is r is to the density when
the thermometer is 50 as 1 : 1 H-s(r 50). We know further

from Mariotte s law, that the density of the air when the

barometer is b is to the density when the barometer is 29.6

as 6:29.6. If we therefore denote the density of the air

when the thermometer is r and the barometer is b by p, and
the density in the normal state of the atmosphere by y (} ,

we
have :

b

1 4- 8 (r 50)

and as the quantity a which occurs in the formulae for the

refraction may be considered as being proportional to the

density, at least for so small changes of the density as we
take into consideration, we should deduce also the true re

fraction from the mean refraction by the formula:

* 6

,,_
^

2976

1 -f- e (r 50)

if did occur only as a factor, as the quantity 1 a in the

divisor can be considered as constant on account of the small-

ness of a. But a occurs also in the factor of
&quot;

, which
1 cr
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shall be denoted by Z and the quantity ft varies also with

the temperature, as it depends on / or when the temperature
is T upon /= i [i + e (r 50)]

if we denote the height of an atmosphere of uniform density
at the temperature T by /. We find therefore the true re

fraction from the following formula:

SJ= -.

-f-i-
= so+ rr-

d~- (-50) + ;
-- d

H (6-2 J.G), ()H-(T oO; 29.6 1 d-r 1 d6

but as the influence of the last two terms is small we may
take for the sake of convenience:

* ,_ U?*_ /_1V +
&quot;

( ^~~

[l-f. a
&amp;lt;T 50)]

+&quot; V29.6/

But if we develop this we find, neglecting the squares

and higher powers as well as the products of p and q:

Thus we obtain from the formulae (m) and (w) the fol

lowing equations for determining p and q:

OQ f

if we take in the second member dz instead of d~z .
-

-^-.
1 + (r aO)

The moisture diminishes also the density of the atmo

sphere and hence the refractive power, but, as Laplace has

observed first, this decrease is almost entirely compensated

by the greater refractive power of aqueous vapour. The

quantity a therefore is hardly changed by &quot;the moisture and

as the effect upon the quantities p and q is very small, we

shall pay no regard to the moisture in computing the re

fraction.

In order to obtain the expressions for p and
&amp;lt;/,

we must
rl 7 /I 7

find the differential coefficients - and -
,
but we shall de-

dt db

duce these values only for Ivory s theory, as the deduction

from BesseFs formula is very similar. According to formula (/)

we have:
~

ft? (1) + 1 }/2 y (2) +/ Q],
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takino-
a^= L From this we obtain:

C&amp;gt; C J T1 ~2

: i
.

^ (1
~

a)

^ 4- |/2/?/ [|/2 y (2)
- v CD] y

as f does not change with the temperature and the stand of

the barometer.

Now we have ^(1)= e~ T *

fe~
2

dt, where T^cotg z
|/-|-,

t~ #2
c? ^, where T2

= cotg &Vfti

and as^ =2 T, ./,(!)- 1 and^= 2^02)- 1,dl
i

dl 2

the last but one term in (/?) becomes:

4-
d
-j- Vzp [(i

-
X) (ir,

2

y a) - 1 r, ) -4- A 1/2 . (T2
2
v (2)

-
* r3 )].

The factor () consists of two terms, the first of which

having the factor 2 is equal to the factor of A in the ex

pression of oz. We therefore embrace this in the latter term

by writing / 2f instead of A. There remains then only

the following term

and as we find differentiating it:

the complete expression for dZ becomes:

. rf^ff 8z(\-a) dl .

dZi-jf.
--

a
+ T ]/2/3. A [1/2 y, (2)

-
y, (I)]

-I-
- /2 ~ 4- (1-A-

As we have:

b

rf /; 29.6
we find: = -

^-g
- - e (r

-
50),
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and likewise:

p + dft
= -2-

-2-e(T 50) 9 hencc
dl= _ E (r _ 50) .

o *o P

finally we have:

/9 &amp;lt;/&amp;gt;l rfa dB 6 29.6*-& henceT=^+ f= 29; 6
-2.&amp;lt;T-50).

We find therefore:

%p . I [1/2 y (2)
-

y, (I)]

--

I cc

&quot;

2 A [)/2 y, (2)
- y (1)] (ry)

where instead of
/&quot;

its value f has been substituted.

If we compute from this p and q for 5= 87, 8z being
852&quot;. 79 we find:

log 7\ = 0.013175, log [tf2 V&amp;lt;2) ^ (1)]
= 8.605021,

log (I,
2
.//(I)

i TO = 9.081 168/0 log T2
= 0.163690,

log(T2
2

i/;(2) 1^)^2 = 9.191771,, and with this

^a.g = 19&quot;.71, S*.p = 185&quot;. 36,

hence :

P= 0.2173.

When the zenith distance is not too great, we can find p
and q also by the series given in No. 10. For differentiating

the coefficients of in (/j) and (/2) with respect to a and
/?,

i - Ct

we easily find the following series:

qSz= -f- [7.90399] tang z -h [7.9014G] tang z^ [5.G6533] tang z
:&amp;gt;

+
1
3.54 172] tang z

7
. . .

p ^2 == + [7.90399] tang z + [8.91567] tang 2* [6.70990] tang z
5

4- [4 567 12] tangs
7

...,

where the coefficients are again logarithms.

For ^ = 75 for instance we find from this = 0.0020

and p= 0.0188.

12. For the complete computation of the true refraction

from formula (m^), we must know the height of the baro

meter reduced to the normal temperature. If we take the

length of the column of mercury at the temperature 50 as

unit and denote the expansion of mercury from the freezing
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to the boiling point equal to by &amp;lt;/,

the stand of the baro-
Oo.o

meter observed at the temperature *) is to the stand, which

would have been observed if the temperature had been 50

as 1 -+-
g (t 50) : 1, or the length of the column of mer

cury reduced to the temperature 50 is:

180

180 H-7U 50)

If further s is the expansion of the scale of the baro

meter from the freezing to the boiling point, s being 0.0018782

if the scale is of brass, we have taking again the length of

the scale at the temperature 50 as unit:

Hence the height b, of the barometer observed at the

temperature ,
is reduced to 50, taking account of the ex

pansion of the mercury and the scale, by the formula:

180 4- s (t 50)
*

50)

The normal length of an English inch is however not re

ferred to the temperature 50 but to the temperature 62;
hence the stand of the barometer observed at the temperature
50 is measured on a scale which is too small, we must there

fore divide the value 650 by 1-f- ^,
so that finally we get:

180-f-s(* 50) 180

180 + q(t 50) 180~4-~12s-

If the scale is divided according to Paris lines and the

thermometer is one of Reaumur, we should get, as the nor

mal temperature of the French inch is 13 R. and we have

50Fahr. = 8&quot;Reaum.:

80 -4- s (t 8) 80

80H-7(* 8) 80 + 5*

This embraces every thing necessary for computing for

mula (m^). If we denote by f the temperature according to

*) The temperature t is observed at a thermometer attached to the baro

meter, which is called the interior thermometer, whilst the other thermometer

used for observing the temperature of the atmosphere is called the exterior

thermometer.
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Fahrenheit s thermometer, by r the same according to Reau

mur s thermometer, by b(f} and b (l) the height of the barometer

expressed in English inches and Paris lines and if we put:

3 _ 6(0 180 _^_ 80

&quot;&quot;2976 1 80 4-1 2,s-

~~
333728 804-5 .v

_ 180 4- s(f 50) __ 804-

180 4- q (/ 50) 80 4- q (r 8)

1_ _1
7
~~

1 4- B . (/- 50) 1 4-f e (r 8)

and give to the mean refraction the form dz aismgz, we

have :

Sz = a tang z .
/+&quot; (B . T^+&quot; (A}

hence log Sz = log a 4- log tang 2 4- (1 4-;&amp;gt;) log y 4- (1 4- 7) (log B 4- log T).

If we have then tables, from which we take log G, 1 -\-p

and 1-f-g for any zenith distance, and log 5, log T and log ;

for any stand of the barometer and any height of the interior

and exterior thermometer, the computation of the true re

fraction for any zenith distance is rendered very easy. This

form, which perhaps is the most convenient, has been adopted

by Bessel for his tables of refraction in his work Tabulae

Regiomontanae.
13. The hypothesis which we have made in deducing

the formulae of refraction, namely that the atmosphere con

sists of concentric strata, whose density diminishes with the

elevation above the surface according to a certain law, can

never represent the true state of the atmosphere on account

of several causes which continually disturb the state of equi

librium. The values of the refraction as found by theory

must therefore generally deviate from the observed values

and represent only the mean of a large number of them, as

they are true only for a mean state of the atmosphere. Bessel

has compared the refractions given by his tables with the

observations and has thus determined the probable error of

the refraction for observations made at different zenith dis

tances. According to the table given in the introduction

to the Tab. Reg. pag. LXIII these probable errors are at

450=1=0&quot;. 27, at
81&quot;==1&quot;,

at 85 + 1&quot;. 7, at 89 30 ==20&quot;. We
thus see, that especially in the neighbourhood of the hor

izon we can only expect, that a mean obtained from a great

many observations made at very different states of the at-
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mosphere may be considered as free from the effect of re

fraction.

For zenith distances not exceeding 80 it is almost in

different, what hypothesis we adopt for the decrease of the

density of the atmosphere with the elevation above the sur

face of the earth and the real advantage of a theory which

is founded upon the true law consists only in this, that the

refractions very near the horizon as well as the coefficients

l-\-p and l-{-q are found with greater accuracy, hence the

reduction of the mean refraction to the true refraction can

be made more accurately. Even the simple hypothesis, adopted

by Cassini, of an atmosphere of uniform density, when the

light is refracted once at the upper limit, represents the mean
refractions for zenith distances not exceeding 80 quite well.

In this case we have simply according to the formulae in

No. 6:

sin i= ^0 sin/,

or as we have now i = f-+-fizi

Sz = (X, 1) tang/,

and since we have also, as is easily seen, sin f=
&quot;

sin z, where

/ is the height of the atmosphere, we get:

J^ == (,,. -l)tang z(l?-- ,).
2 I V a cos z 2 J,/

I/

If we take now for /&amp;lt; 1 the value 57&quot;. 717, we find

for the refraction at the zenith distances 45, 75 and 80

the values 57&quot;.57, 211&quot;. 37, 314&quot;. 14, whilst according to Ivory

they are 57&quot;. 45, 21T.37 and 315&quot;. 20. But beyond this the

error increases very rapidly and the horizontal refraction is

only about 19 .

The equation (/) in No. 6 can be integrated very easily,

if we adopt the following relation between s and r:

^

For if we introduce a new variable, given by the equa
tion :
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the equation (/&quot;)
becomes simply:

;== _ dw_
(2m 1) Vlw*

therefore if we integrate and substitute the limits w = sin z

and w = (1 2 a)
&quot;

sin ss, we find:

2 / - 1

i

2m 1

or:

2 arc sin (12 a)

&amp;lt;&amp;gt;,
1

sin [2 (2 m I ) Sz] = (1 2 a)

&quot;

sin z
,

for which we may write for brevity:

If sin z= sin [z NSz].

This is Simpson s formula for refraction by which the

refractions for zenith distances not exceeding 85 may be

represented very well, if the coefficients M and N are suitably

determined.

If we add to the last equation the identical equation

sin s = sin* and also subtract it, we easily find two equa

tions from which we obtain dividing one by the other:

N

or tang (A .Sz) B tang [z A.Sz],

which is Bradley s formula for refraction.

14. As the altitude of the stars is increased by the re

fraction, we can see them on account of it, when they really

are beneath the horizon. The stars rise therefore earlier and

set later on account of the refraction.

We have in general:

cos z= sin (f
sin -+ cos

y&amp;gt;

cos S cos t (r)

from which follows:

sin zdz= cos
&amp;lt;p

cos S sin t . dt

hence if the object is in the horizon:

______ ____
cos y cos S sin t

As in this case dz is the horizontal refraction or equal

to 35
,
we find for the variation of the hour angle at the

rising or setting:

cos
&amp;lt;p

cos S sin t
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In No. 20 of the first section we found for Arcturus

and the latitude of Berlin:

t = 7 h 42m 40 s

and as we have &amp;lt;?= 19 54 .5, cp
= 52 30 . 3, we find:

A/o=437s.

Arcturus rises therefore so much earlier and sets so

much later. We can compute also directly the hour angle
at the rising or setting with regard to refraction, if we take

in the last formula (r) z = 90 35 . We have then :

cos ~ sin (p sin 8
C0st= -Z-gCOS (p COS

and adding 1 to both members
,
we find the following con

venient formula:

i _ I/ cos ^s (f ~t~ d ~+~ z) cos
TJ- (cp -+- S 2)

COS Cp COS S

If we subtract both members from 1, we obtain a sim

ilar formula:

i / sin i (z -j- cp &amp;lt;?)
sin 4- (z -+- d OP)

sm| *= I/
2V

--&quot;-

cos y cos ()

In the case of the moon we must take into account be

sides the refraction her parallax, which increases the zenith

distance and hence makes the time of rising later, that of

setting earlier. The method of computing them has been

given already in No. 20 of the first section and shall here

only be explained by an example.
For 1861 July 15 we have the following declinations

and horizontal parallaxes of the moon for Greenwich mean
time.

9 P

July 15 Oh 15 32.1 59 13

12h 17 51.5 . 59 15

16 Oh 19 55.6 59 14

12 21 42.0 59 13

It is required to find the time of setting for Greenwich.

According to No. 19 of the first section, where the mean time

of the upper and lower culmination was found, we have:

Lnnai- time Mean time

6hl6

&quot;^

12-27.5.

12
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If we take now an approximate value of the declination

-17 51 . 5 we find with
cp
= 51 28 . 6 and = 89 35 . 8,

t= kh 21m .5 and the mean time corresponding to this lunar

time 10h 48m . If we interpolate for this time the declination

of the moon, we find -17 38 . 2 and repeating with this

the former computation, we find the hour angle equal to

4 h 22m .9, hence the mean time of setting 10 h 49m .6.

15. The effect of the atmosphere on the light produces

besides the refraction the twilight. For as the sun sets later

for the higher strata of the atmosphere than for an observer

at the surface of the earth, these strata are still illuminated

after sunset and the light reflected from them causes the

twilight. According to the observations the sun ceases to

illuminate any portions of the atmosphere which are above

the horizon when he is about 18 below the horizon. Thus

the moment, when the sun reaches the zenith distance 108

is the beginning of the morning or the end of the evening

twilight.

If we denote the zenith distance of the sun at the be

ginning or end of twilight by 90&quot; -+- c, by t
tt
the hour angle

at the time of rising or setting and by T the duration of

twilight, we have:

sin c= sin cp sin -\- cos cp cos S cos (t H- r)

hell e =

COS (* + T)= - &amp;gt;***
**

COS (p COS

or putting H= 90
cf +-

-i / sin f (H Hhc) cosTf(H ~c)
sin * (&amp;lt; -4- *)= I/

cos
cp

cos

from which we can find T after having computed t
ti

.

If we call Z the point of the heavenly sphere, which

at the time of sunset was at the zenith and by Z that point

which is at the zenith at the end of twilight, we easily see

that in the triangle between these two points and the pole

the angle at the pole is equal to T and we have:

cos ZZ = sin y
2

-+- cos
&amp;lt;p

2 cos r.

But as we have in the triangle between those two points

and the sun S, ZS= 90-hc, Z S=90, we have also call

ing the angle at the sun S:

cos ZZ = cos c cos S
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and thus we find:

1 cos c . cos S
2 COS Q5

2

where S, as is easily seen, is the difference of the parallactic

angles of the sun at the time of sunset and at the end of

twilight. The equation shows, that T is a minimum, when
the angle S is zero, or when at the end of twilight the point,

which was at the zenith at sunset, lies in the vertical circle

of the sun. The two parallactic angles are therefore in that

case equal.

The duration of the shortest twilight is thus give.n by
the equation:

sin 4- r=
cos

9?

and as we have:

sin 9? -j- sin c sin S
.

. , cos p ,

sin o cos c cos o

we find:

sin S= tang ^ c sin
95,

from which equation we find the declination which the sun

has on the day when the shortest twilight occurs.

If we denote the two azimuths of the sun at the time

of sunset and when it reaches the zenith distance 90-(-c by
A and A\ we have:

cos
95

sin A = cos S sinp

cos
(f

sin A = cos S sinp .

Hence we have at the time of the shortest twilight

sin A= sinA or the two azimuths are then the supplements
of each other to 180.

From the two equations:
sin c= sin

y&amp;gt;

sin S -f- cos
y&amp;gt;

cos 8 cos (t +- 1]

and
= sin 9? sin S -f- cos

9? cos S cos t

follows also:

cos 4- c sin 4^ c
sm (t -f- % T) sin 4 r= V &amp;gt;

cos cos
y&amp;gt;

If we take c=18 we find for the latitude
&amp;lt;/&amp;gt;=81

sin|r=l, hence the duration of the shortest twilight for

that latitude is 12 hours. This occurs, when the declination

of the sun is 9
,
the sun therefore is then in the horizon

at noon and 18 below at midnight. But we cannot speak
12*
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any more of the shortest twilight, as the sun only when it

has this certain declination fulfills the two conditions, that it

comes in the horizon and reaches also a depression of 18

below the horizon; for if the south declination is greater

the sun remains below the horizon and if the south decli

nation is less it never descends 18 below the horizon.

At still greater latitudes there is no case when we can

speak of the shortest twilight in the above sense and hence

the formula for sin ^ T becomes impossible.

Note. Consult: on refraction: Laplace Mecanique Celeste Livre X. -

Bessel Fundamenta Astronomiae pag. 2G et seq.
--

Ivory in Philosophical

Transactions for 1823 and 1838. Bruhns in his work: Die Astronomische

Strahlenhrechung has given a compilation of all the different theories.

III. THE ABERRATION.

16. As the velocity of the earth in her orbit round

the sun has a finite ratio to the velocity of light, we do not

see the stars on account of the motion of the earth in the

direction, in which they really are, but we see them a little

displaced in the direction, towards which the earth is moving.
We will distinguish two moments of time t and t at which

the ray of light coming from an unmove-

able object (fixed star) strikes in succes

sion the object-glass and the eye-piece of

a telescope (or the lense and the nerve

of the eye). The positions of the object-

glass and of the eye-piece in space at the

time t shall be a and 6, and at the time

t a and b Fig. 5. Then the line a b re

presents the real direction of the ray of

light, whilst a b or a b\ both being parallel

on account of the infinite distance of the

fixed stars, gives us the direction of the

apparent place, which is observed. The

angle between the two directions b a and

b a is called the annual aberration of the

fixed stars.
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Let #, #, z be the rectangular co-ordinates of the eye

piece b at the time
,
referred to a certain unmoveable point

in space; then:

x -f-^ (J
-

t), y + ^ (
- and a -f- (*

-
)

/ a? ai

are the co-ordinates of the eye-piece at the time
,
since during

the interval t t we may consider the motion of the earth

to be linear. If the relative co-ordinates of the object-glass
with respect to the eye-piece are denoted by , i] and f , the

co-ordinates of the object-glass at the time
,
when the light

enters it, are x -f- , y -f- ?;, ss -f- ?.

If we now take as the plane of the x and # the plane
of the equator and the other two planes vertical to it, so that

the plane of the x, z passes through the equinoctial, the plane
of #, z through the solstitial points ;

if we further denote by
and () the right ascension and declination of that point in

which the real direction of the ray of light intersects the ce

lestial sphere and by u the velocity of light, then will the

latter in the time t t describe a space whose projections
on the three co-ordinate axes are :

a (t /) cos cos , {u (t t) cos &amp;lt;?sin
, t
u (t t) sin 8.

Denoting further the length of the telescope by / and

by a and &amp;lt;) the right ascension and declination of the point
towards which the telescope is directed, we have for the co

ordinates of the object-glass with respect to the eye -piece,
which are observed:

I= I cos cos n. .
//
= I cos sin

,
= / sin d .

Now the true direction of the ray of light is given by
the co-ordinates of the object-glass at the time t:

I cos cos a -+ .r,

I cos sin a -\-y,

I sin &amp;lt;T -h z,

and by the co-ordinates of the eye-piece at the time t :
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We have therefore the following equation if we denote

u, cos cos a= L cos 8 cos
&amp;gt;

a

,

cos &amp;lt;? sin = L cos &amp;lt;? sin a -~
,

{

u sin 8= L sin 8

We easily derive from these equations the following:

cos 8 cos (a a) = cos 8 -\ }

-^ sin a -f-
- cos

[
,

u, ft at at

L 1 (dy dx
cos 8 sin (a a) = cos sin

p /u
dt dt

1 *(dy dx .

sec o
)
~ cos sm

r ,
. u, \dt dt

or : tang (a )
=

-7-3 :

1 ,

! * i ^ ,
rf;rH sec o

\ -^ sm a -+-
- cos

;W
(

rf&amp;lt; (/^

We find a similar equation for tang (d
1

^). If we de

velop both equations into series applying formula (14) in No. 11

of the introduction, we find, if we substitute in the formula

for tang ((V #) instead of tang|( ) the value derived

from a a and omit the terms of the third order:

1 \dx . dy )

a a= { sm a f- cos
(
sec o

^ |rf&amp;lt;
dt

dx &amp;lt;

c^ .
s&amp;gt; ,

. e, . e o
o= - sm o cos a H sin o sin a cos o

p ( dt dt dt

(a)
ang ^

1 (dx s dy 9 .
c?z

.
_

cos o cos a H- cos () sm a -\- sin o

fi
2 (dt dt dt

^(dx . ^ dy .
.

. &amp;lt;/^ )

X
)

-- sin o cos a + sm o sm cos o
(

I dt dt dt

If we now refer the place of the earth to the centre of

the sun by co-ordinates a?, y in the plane of the ecliptic,

taking the line from the centre of the sun to the point of

the vernal equinox as the positive axis of x, and the pos
itive axis of y perpendicular to it or directed to the point

of the summer solstice and denoting the geocentric longitude
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of the sun by O, its distance from the earth by R, we
have *) :

*= .Ecos,
y = R sin Q-

If we refer these co-ordinates to the plane of the equa

tor, retaining as the axis of x the line towards the point of

the vernal equinox and imagining the axis of y in the plane
of y z to be turned through the angle g, equal to the obliquity
of the ecliptic, we get:

y= R sin Q cos e.

z= R sin O sir-
&amp;gt;

and from this we find, since according to the formulae in

No. 14 of the first section we have the longitude of the sun

= v -h 7i or equal to the true anomaly plus the longitude
of the perihelion:

dx
*
dR dv__ =s_ co^_H_* sin0_

dy dR _^ dv
f-
= sm (0 cos e -- R cos (O cos e

at at dt

dz dR dv
-- = sm () sin s - --- R cos CO sin e _

dt dt dt

But we have also according to the formulae in No. 14

of the first section:

d v= -

D dE and as we have also dE=~ dM
-K H

we find : dv _ a 2
cos y dM

~d~t

~
R^ ~dt

Further follows from the equation R= .
^ - in con--

nection with the last:

dR dM~ = a tang y sm v -

and from this we get:

dx a dM( .
_ a* cosy _.

-r-= -
{ sin QO -^ sin fp sm v cos CO

dt cosy dt ( R
hence observing that:

a 7
cosy ^
^ = 1 -f- sin fp cos v and () v= TT,
it

&amp;lt;/^ a dM
.

__

-r = ~-
IsmO + sm 9

s sm ^J
dt cos y rf

*) As the heliocentric longitude of the earth is 180 -+ Q.
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and --- - = cos
&quot;

[cos O H- sin or cos n] (fi)
dt cosy dt

dz a dM r= sin s
,

I cos CO -f- sin cp cos TT |.

r/i! cosy dt

If we substitute these expressions in the formulae (a),

the constant terms dependent on n give in the expressions
for the aberration also constant terms which change merely
the mean places of the stars and therefore can be neglected.
If we introduce also instead of /.&amp;lt; the number k of seconds,

in which the light traverses the semi-major axis of the earth s

orbit, so that we have:

1___ k

p a

we find, taking only the terms of the first order:

,
k dM

-
I cos Q cos s cos a -f- sm M sm a] sec o

cosy dt
^

S 8= -f- [cosO (sin sin dcoss cos &amp;lt;?sin e) cos a sin ^sinQl-
cos y at

The constant quantity is called the constant
cos y dt

of aberration, and since *- -- denotes the mean sidereal mo

tion of the sun in a second of time, which is the unit of

A-, we are able to compute it, if besides the time in which

the light traverses the semi -major axis of the earth s orbit

is known. Delambre determined this time from the eclipses

of Jupiter s satellites and thus found for the constant of

aberration the value 20&quot;. 255. Struve determined this con

stant latterly from the observations of the apparent places of

the fixed stars and found 20&quot;. 4451 and as we have
J =
dt

== 0.041 0670 and cos == 9.999939 we find from

this for the time in which the light traverses the semi-major
axis of the earth s orbit 497 s

. 78*).
We have therefore the following formulae for the an

nual aberration of the fixed stars in right ascension and de

clination :

*) According to Hansen the length of the sidereal year is 365 days 6

hours minutes and 1),35 seconds or 3(55.2563582 days, hence the mean

daily sidereal motion of the sun is 59 8&quot;. 193.
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n a= 20&quot; . 4451 [cos cos E cos a -+- sin sin
] sec S

8= 4- 20&quot;. 4451 cos [sin sin S cos cos S sin s] (A)
-

20&quot; . 4451 sin cos sin &

The terms of the second order are so small, that they
can be neglected nearly in every case. We find these terms

of the right ascension by introducing the values of the dif

ferential coefficients (6) into the second term of the formulae

(a), as follows:

& 2 /dJl\ 2

{ a f-r
J

sec&amp;lt;?
2
[cos20sin2(H-cos 2

) 2 sin 2 cos 2 cose],

where the small term multiplied by sin 2 a sin s
2 has been

omitted. For we find setting aside the constant factor:

2 sin 2 a [cos
2
cos e

2
sin

2

]
2 sin 2 cos [cos

2 -~ sin
7

]

from which the above expression can be easily deduced. If

we substitute the numerical values taking s = 23 28
,
we

obtain :

-
0&quot; . 000932!) sec S 2

sin 2 cos 2

-h 0&quot; . 0009295 sec S* cos 2 sin 2

As these terms amount to T( r&amp;gt;

of a second of time only if

the declination of the star is
85.]&quot;, they can always be ne

glected except for stars very near the pole.

The terms of the second order in declination, if we ne

glect all terms not multiplied by tang r?, are:

-
I

~

C^~~T \~Jl )
tang S

t
cos - O (cos 2 ( 1 -h cos f

2
) sin

2
)

H- 2 sin 2 sin 2 a cos t-].

For we find the term multiplied by tang J, setting aside

the constant factor:

sin
2
sin a 2

-+- cos 2
cos 2

cos 2
-f- ^ sin 2 sin 2 cos

and if we express here the squares of the sines and cosines

by the sines and cosines of twice the angle and omit the

constant terms 1 -f- cos 2 as well as the term cos 2 a sin 2

we easily deduce the above expression. Substituting again
the numerical values we find:

-h [0&quot;. 0000402 0&quot;. 0004665 cos 2 a] tang cos 2
-

0&quot;. 0004648 tang S sin 2 sin 2 0.
As these terms also do not amount to :

fj g of a second
of arc while the declination is less than 87 6

, they are taken

into account only for stars very near the pole.
In the formulae (A) for the aberration it is assumed,

that
,
S and be referred to the apparent equinox and
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that is the apparent obliquity of the ecliptic. But in com

puting the aberration of a star for any long period it is con

venient, to neglect the nutation and to refer a, 3 and to

the mean equinox and to take for the mean obliquity. In

this case however the values of the aberration found in that

way must be corrected. We find the expressions of these

corrections by differentiating the formulae (A) with respect

to a, (J, and and taking da, dS, dO and de equal to

the nutation for these quantities. Of course it is only ne

cessary to take the largest terms of the nutation and omit-

ing in the correction of the right ascension all terms, which

are not multiplied by sec . tang ti and in declination all

terms which are not multiplied by sin d . tang #, we easily

see, since the increments dQ and ds do not produce any such

terms, that we need only take the following:

da=
[6&quot;.

867 sin ft sin -f- 9&quot;. 223 cos ft cos ] tang S.

dS=
[6&quot;

. 867 sin ft cos a -h 9&quot; . 223 cos ft sin a].

Taking here 6&quot;.867 = & and 9&quot;. 223 = ,
we find, if we

substitute these quantities into the differentials of the equa

tions (A):

a a= tang sec &amp;lt;5 10&quot;.2225 / (&-{- cose) sin 2 a cos (Q 4- ft)

} -\-(b a cos ) sin 2 a cos (0 ft)

\ (b cos a) cos2 a sin (0 ft)

== tang S sin &amp;lt;?5&quot; . 1 1 12 / (b 4- a cos e)cos 2 a cos (0 -f- ft) \

I (&cose-Ha)sin2sinCQ-4-n) I

/ -+- (b a cose) cos 2 a cos (O O) (

-J- (b cos a) sin 2 a sin (0 ft) i

}

or if we substitute the numerical values:

a a= tang S sec S . I 0&quot;.0007597 sin 2 a cos (0+ ft) ,

) + 0&quot;.0007693 cos 2 a sin (0 -H ft)

} 0&quot;.0000790 sin 2 cos (0 ft)
\

( _j_ 0&quot;.0001449 cos 2 sin (0 ft) &amp;lt;

== tang S sin 8 .

/
0&quot;.0003798 cos 2 a cos (0 -i-ft)

&amp;gt;

- 0&quot;.0003847 sin 2 sin (04-H) J

- 0&quot;.0000395 cos 2 a cos (0 ft) (

0&quot;.0000725 sin 2 a sin (0 ft)
- 0&quot;.0000395 cos (04- ft)

\ 0&quot;.000379Scos(0 ft)
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While the decimation is less than 85|, a a is less

than T5Q of a second of time and e) is greater than TJ 5

of a second of arc only for declinations exceeding 85 6 .

Hence these terms as well as those given by the equations

(c) and (d) can be neglected except in the case of stars

very the pole.

The equations for the aberration are much more simple,

if we take the ecliptic instead of the equator as the funda

mental plane. For then neglecting again the constant terms

we find:

dx a _ dM
-7-
= H sin W -r~ &amp;gt;

at cosy dt

dy a dM
Tt

s
&quot;cos/

080 77

*=&amp;lt;&amp;gt;

and if we substitute these expressions in the formulae (a) and

write K and p in place of a and #, we find for the aberration

of the fixed stars in longitude and latitude:

A A= 20&quot;. 445 1 cos (/I O) sec ft,

ft /?
= + 20&quot;. 4451 sin (A 0) sin ft

which formulae are not changed if we use the apparent in

stead of the mean equinox.

The terms of the second order are:

in longitude: = 4- 0&quot;. 0010133 sin 2 (0 /I) sec /2
2

,

in latitude : =
0&quot;. 0005067 cos 2 (0 A) tang ft,

where the numerical factor 0.0010133 is equal to f .
i? ^4^5

!!!
.

Example. On the first of April 1849 we have for Arc-
turus :

=14h8m48s= 212 12 .0, = 4- 19 58 . 1,
= 1137 .2

fi= 23 27 . 4.

With this we find:

= 4- 18&quot;. 88,

S - = -
9&quot;. 65,

and as

A= 202&quot; 8
, /?
= 4- 30 50

,

we find also:

A I = 4- 23&quot;. 41,



188

17. In order to simplify the computation of the aber
ration in right ascension and declination, tables have been

constructed, the most convenient of which are those given by
Gauss. lie takes:

20&quot; . 445 sin = a sin (Q -|- A\
20&quot;. 445 cos O cos e= a cos (Q -f- A).

and thus has simply:

= (( sec S cos (04-4 ) ,

$ &amp;lt;?= sin 8 sin (0 -f- A a) 20&quot;. 445 cos cos t&amp;gt; sin t

= a sin # sin (0 + A a) 10&quot; . 222 sin e cos (0 -f- &amp;lt;?)

- 1 0&quot;. 222 sine cos (O #).

From these formulae the tables have been computed.
The iirst table gives A and log a, the argument being the

longitude of the sun, and with these values the aberration

in right ascension and the first part of the aberration in de

clination is easily computed. The second and third part is

found from another table, the angles 0-M and 8 being

successively used as arguments. Such tables were first pub
lished by Gauss in the Monatliche Correspondenz Band XVII

pag. 312, but the constant there used was that of Delambre
20&quot;. 255. Latterly they have been recomputed by Nicolai

with the value 20&quot;. 4451 and have been published in Warn-
storff s collection of tables.

For the preceding example we find from those tables:

A= \ 1
, log o = 1.2748

and with this

a= -f-18&quot;. 88

and the first part of the aberration in declination 2&quot;. 15.

For the second and third part we find 3&quot;.47 and
4&quot;.03,

if we enter the second table with the arguments 31 35 and

-8 21. We have therefore:

3
1

-$=-9&quot;. 65.

18. The maximum and minimum of aberration in lon

gitude takes place, when the longitude of the star is ei

ther equal to the longitude of the sun or greater by 180,
while the maximum and minimum in latitude occurs, when

the star is 90&quot; ahead of the sun or follows 90&quot; after. Very
similar to the formulae for the annual aberration are those

for the annual parallax of the stars (that is for the angle
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which lines drawn from the sun and from the earth subtend
at the fixed star) only the maxima and minima in this case
occur at different times. For if & be the distance of the
fixed star from the sun, /: and ft its longitude and latitude
as seen from the sun, the co-ordinates of the star with re

spect to the sun are :

x & cos ft cos A, y = A cos ft sin /, r= A sin
ft.

But the co-ordinates of the star referred to the centre
of the earth are:

x = A cos ft cos A
, y A cos ft sin A

,
== A sin /?

and as the co-ordinates of the sun with respect to the earth are:

X=RcosQ and r=/2sinQ
where the semi-major axis of the earth s orbit is the unit,
we have:

A cos ft

1

cos ti= A cos /^ cos /I -f- # cos O
A cos /? sin A = A cos ft sin A -j- It sin Q

A sin ft
= A sin

/9,

from which we easily deduce:

A A= *
sin (A Q) sec ft . 206265,u

ft ft
=

-^
;
cos (/I Q) sin ft . 206265.

or as
-^

206265 is equal to the annual parallax n:

K I= n R S in (I Q) sec ^
P l3= nR cos (A Q) sin /?.

Hence we see that the formulae are similar to those of
the aberration, only the maximum and minimum of the par
allax in longitude occurs, when the star is 90 ahead of the

sun or follows 90&quot; after it, while the maximum and minimum
in latitude occurs, when the longitude is equal to that of
the sun or is greater by 180.

For the right ascensions and declinations we have the

following equations :

A cos cos a = A cos S cos a -+- R cos Q
A cos sin = A cos S sin a -f- R sin Q cos e

A sin 8 = A sin 8 -+- R sin sin e,+
from which we find in a similar way as before:

a a= TTR [cos sin a sin Q cos s cos ] sec S
$ ^= T*R [cos sin sin 8 sin cos S] sin

(Z&amp;gt;)

nR cos sin S cos .
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19. The rotation of the earth on her axis produces like

wise an aberration which is called the diurnal aberration.

But this is much smaller than the annual aberration, since

the velocity of the rotation of the earth on the axis is much

smaller than the velocity of her orbital motion.

If we imagine three rectangular axes, one of which coin

cides with the axis of rotation, whilst the two others are sit

uated in the plane of the equator so that the positive axis

of x is directed from the centre towards the point of the

vernal equinox and the axis of y towards the 90th

degree of

right ascension, the co-ordinates of a place at the surface

of the earth are according to No. 2 of this section as follows :

z gcosy cos 0,

y = q cos 90 sin ,

z= Q sin (f
.

We have therefore:

dx
-

dt

dy2- = -j- () COS (p
COS 0.

- = o cos (f sin
dt

If we substitute these expressions in formula (a) in No. 16,

we easily find omitting the terms of the second order:

a a= P cos y cos (& a) sec #,

fi dt

8 8=--- cos y sin (0 a) sin 8.

ft
dt

If now T be the number of sidereal days in a sidereal

year, the angular motion of a point caused by the rotation

on the axis is T times faster than the angular motion of the

earth in its orbit and we have:

d& __ T dM
dt dt

Thus as we have:

- p= k = k sin TT

I

where n is the parallax of the sun, k the number of seconds

in which the light traverses the semi-major axis of the earth s

orbit, the constant of diurnal aberration is:

k . . sin 7t . T,
dt
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or as we have:

jk. ^&quot;=20&quot;.445, 7r==S&quot;.5712 and 7
7=3G6.2G is,

0&quot;.3H3.

Hence if we take instead of the geocentric latitude
&amp;lt;/

simply the latitude
&amp;lt;f ,

we find the diurnal aberration in right

ascension and declination as follows:

a =
0&quot;. 31 13 cos y cos (0 a)sceS,

S 8= 0&quot;. 3113 cosy sin (0 ) sin 5.

The diurnal aberration in declination is therefore zero,,

when the stars are on the meridian, whilst the aberration in

right ascension is then at its maximum and equals:
0&quot;. 3113. cos

y&amp;gt;

sec 8.

20. We have found the following formulae for the an

nual aberration of the fixed stars in longitude and latitude :

A A= k cos (I Q) sec p,

ft p= + k sin (1 0) sin/9,

where now k denotes the constant 20&quot;. 445. If we now imagine
a tangent plane to the celestial sphere at the mean place of

the star and in it two rectangular axes of co-ordinates, the

axes of x and y being the lines of intersection of the parallel

circle and of the circle of latitude with the plane and if we
refer the apparent place of the star affected with aberration

to the mean place by the co-ordinates:

x= (A K} cos /9 and y= /? /? *),

we easily find by squaring the above equations:

^
2 = P sin/?

2 x l
sin/5

2
.

This is the equation of an ellipse, whose semi -major
axis is k and whose semi-minor axis is k sin

ft. We see there

fore that the stars on account of the annual aberration de

scribe round their mean place an ellipse, whose semi -major
axis is 20&quot;. 445 and whose semi -minor axis is equal to the

maximum of the aberration in latitude. Now if the star is

in the ecliptic, ft and hence the minor axis is zero. Such
stars describe therefore in the course of a year a straight

line, moving 20&quot;. 445 on each side of the mean place. If the

star is at the pole of the ecliptic, ft equals 90 and the mi-

*) For as the distances from the origin are very small we can suppose
that the tangent plane coincides with that small part of the celestial sphere.
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nor axis is equal to the major axis. Such a star describes

therefore in the course of a year about its mean place a

circle whose radius is 20&quot;. 445.

In order to find the place which the star occupies at

any time in this ellipse, we imagine round the centre of the

ellipse a circle, whose diameter is the major axis of the el

lipse. Then it is obvious, that the radius must move in the

course of a year over the area of the circle with uniform

velocity so that it coincides with the west side of the ma

jor axis, when the longitude of the sun is equal to the

longitude of the star, and with the south part of the minor

axis, when the longitude of the sun exceeds the longitude of

the star by 90. If we draw then the radius corresponding

to any time and let fall a perpendicular line from the ex

tremity of the radius on the major axis, the point, in which

this intersects the ellipse, will be the place of the star.

If the star has also a parallax ;r, the expressions for the

two rectangular co-ordinates become:

x k cos (A 0) n sin (A 0)
. y = -+- k sin (A Q) sin ft n cos (A 0) sin /?

or, taking:
k= a cos A
TC = a sin A

x = a cos (A A )

y = H- a sin (/ A) sin /3.

Hence also in this case the star describes round its

mean place an ellipse, whose semi-major axis is Ftf
2
-h77

2 and

whose semi -minor axis is sin ft Vk?-\- ^&amp;gt;

The effect of the diurnal aberration is similar. The stars

describe on account of it in the course of a sidereal day
round their mean places an ellipse, whose sem-imajor axis is

0&quot;. 3113 cos (f and whose semi-minor axis is 0&quot;. 3113 cosy sin 8.

If the star is in the equator, this ellipse is changed into a

straight line, while a star exactly at the pole of the heavens

describes a circle.

21. If the body have a proper motion like the sun, the

moon and the planets, then for such the aberration of the

fixed stars is not the complete aberration. For as such

a body changes its place during the time in which a ray of
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light travels from it to the earth, the observed direction of

the ray, even if corrected for the aberration of the fixed

stars, does not give the true geocentric place of the object

at the time of observation. We will suppose, that the light,

which reaches the object-glass of the telescope at the time
,

has left the planet at the time T. Let then P Fig. 5 be the

place of the planet at the time T, p its place at the time f,

A the place of the object-glass at the time T, a and b the

places of the object-glass and the eye-piece at the time t and

finally a and b their places at the time
,
when the light

reaches the eye -piece. Then is:

1) AP the direction towards the place of the body at the

time r, ap that towards the true place at the time
,

2) a b and a b the direction towards the apparent place

at the time t or t\ the difference of the two being in

definitely small,

3) b a the direction towards the same apparent place cor

rected for the aberration of the fixed stars.

Now as P, a, b
1

are situated in a straight line, we have:

Pa : a b = t T : t t.

Furthermore as the interval t - - T is always so small,

that we can suppose, that the earth during the same is mo

ving in a straight line and with a uniform velocity, the points

-4, a, a are also situated in a straight line, so that A a and

aa are also proportional to the times t T and t t. Hence
it follows that A P is parallel to 6 a or that the apparent

place of the planet at the time t is equal to the true place
at the time T. But the interval between these two times is

the time, in which the light from the planet reaches the

eye or is equal to the distance of the planet multiplied by
497 s

. 8, that is, by the time in which the light traverses the

semi-major axis of the earth s orbit, which is taken as the unit.

It follows then that we can use three methods, for com

puting the true place of a planet from its apparent place at

any time t.

I. We subtract from the observed time the time in

which the light from the planet reaches the earth; thus we
find the time T and the true place at the time T is ident

ical with the apparent place at the time t.

13
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II. We can compute from the distance of the planet
the reduction of time t T and from the daily motion of

the planet in right ascension and declination compute the

reduction of the observed apparent place to the time T.

III. We can consider the observed place corrected for

the aberration of the fixed stars as the true place at the

time T, but as seen from the place which the earth occupies
at the time t. This last method is used when the distance

of the body is not known, for instance in computing the orbit

of a newly discovered planet or comet.

Since the time in which the light traverses the semi-

major axis of the earth s orbit is 497 s
. 8 and the mean daily

motion of the sun is 59 8&quot;. 19, we find the aberration of

the sun in longitude according to rule II. equal to 20&quot; . 45,

by which quantity we observe the longitude always too small.

On account of the change of the distance and the velocity

of the sun this value varies a little in the course of a year

but only by some tenths of a second.

22. The aberration for a moveable body, being in fact

the general case, may also be deduced from the fundamental

equations (a) in No. 16. For it is evident, that in this case

we need only substitute instead of the absolute velocity of

the earth its relative velocity with respect to the moveable

body, since this combined with the motion of the light again

determines the angle by which the telescope must be in

clined to the real direction of the rays of light emanating
from the body in order that the latter always appear in

the axis of the telescope nothwithstanding the -motion of the

earth and the proper motion of the body. If therefore
, ?/

and L, be the co-ordinates of the body with respect to the

system of axes used there, we must substitute in (a) -j-

-
,

dy_d_n dz_d .

d f
dx

djj an(j dz^ fi if A
.

h
dt dt dt dt dt dt dt

distance of the body from the earth, we find the heliocentric

co-ordinates , ?/, f, since the geocentric co-ordinates are

A cos 8 cos etc.
,
from the formulae :

f= A cos cos a -f- x ,

rj
= A cos 8 sin -f- y , (/)= A sin 8 H- z

,
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from which we easily deduce the following:

(dx dg\ . (dy drj\ da
[

I sm r-; r- I cos a= A cos o
\dt dt) \dt dtJ dt

(dx dg\ .
. (dy dri\ ... (dz d^\ ~ dS

1 sm o cos a -+- [
I sin o sin a -f- I

J cos o= A -r~
\&amp;lt;/&amp;lt; c/// W d// Vrf* dt/ dt

Hence the formulae (a) change into:

A da
a a= ,

^ e?

A X * d8
d d ,

ft dt

or as equals the time in which the light traverses the dis

tance A, we find, if we denote this by t T:

which formulae show, that the apparent place is equal to the

true place at the time T and therefore correspond to the

rules I and II of the preceding number.

But we also find the aberration for this case by adding
to the second member of the first formula (a) the term

^ sin a cos a sec 8 and a similar term to the second
fi [_dt dt J

member of the second equation. We get therefore, if we
denote the aberration of the fixed stars by Da and Dd:

,
1 [~c?! . dr] ~|a= D a -\ sm a cos a sec o .

fi \_dt dt J

S 8= D -i sin cos -j- sin d sin a +- - cos 8 .

fi [_dt dt dt J

But differentiating the equations (/*), taking in the second

member only the geocentric quantities A? ?
8 as variable and

the co-ordinates of the earth as constant, and denoting the

partial differential coefficients by (-^)
and (V), we find the

second members of the above equations respectively equal to :

A (da\ A /^^\

/u,
\dt /

/LI
\dt /

We therefore have:

and S DS= S-t-T).
13
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which formulae correspond to the third rule of the preceding

No. For since and are the differential coefficients

of a and cV,
if the heliocentric place of the planet is changed

whilst the place of the earth remains the same, the second

members of the two equations give the places of the planet
at the time T, buf as seen from the place which the earth

occupies at the time t.

Note. The motion of the earth round the sun and the rotation on the

axis are not the only causes which produce a motion of the points on the

surface of the earth in space, as the sun itself has a motion, of which the

earth as well as the whole solar system participates. This motion consists

of a progressive motion, as we shall see hereafter, and also of a periodical

one caused by the attractions of the planets. For if we consider the sun

and one planet, they both describe round their common centre of gravity

ellipses, which are inversely as the masses of the two bodies. The first mo
tion which at present and undoubtedly for long ages may be considered as

going on in a straight line, produces only a permanent and hence impercep
tible change of the places of the stars and the aberration caused by the

second motion is so small that it always can be neglected. For if a and a

are the radii of the orbits of two planets which are here considered as cir

cular, r and T their times of revolution, then the angular velocities of the

two will be as : -7 ,
hence their linear velocities as ar : a r or as j/a : J/a,

since according to the third law of Kepler the squares of the periodic times

of two planets are as the cubes of their semi- major axes. The constant

of aberration for a planet, the semi -major axis of whose orbit is a, taking
O/\&quot;

i **

the radius of the earth s orbit as unit, is therefore - - ~- and hence the
ya

constant of aberration caused by the motion of the sun round their common
20

;

.45
centre of gravity is equal to m .

~
r^~ ,

where m is the mass of the planet

expressed in parts of the mass of the sun. In the case of Jupiter we have

W*= TOTO and a= 5.20, hence the constant of aberration caused by the at

traction of Jupiter is only 0&quot;.OOS6.

The perturbations of the earth caused by the planets produce also changes
of the aberration, which however are so small, that they can be neglected.

Compare on aberration: The introduction to Bessel s Tabulae Regio-
montanae p. XVII et seq. ;

also Wolfers, Tabulae Reductionum p. XVIII etc.

Gauss, Theoria motus pag. G8 etc.



FOURTH SECTION.

ON THE METHODS BY WHICH THE PLACES OF THE STARS AND
THE VALUES OF THE CONSTANT QUANTITIES NECESSARY FOR

THEIR REDUCTION ARE DETERMINED BY OBSERVATIONS.

The chief problem of spherical astronomy is the deter

mination of the places of the stars with respect to the fun

damental planes and especially the equator, as their longitudes

and latitudes are never determined by observations, but, the

obliquity of the ecliptic being known, are computed from their

right ascensions and declinations. When the observations

are made in such a way as to give immediately the places

of the stars with respect to the equator and the vernal equi

nox, they are called absolute determinations, whilst relative

determinations are such, which give merely the differences

of the right ascensions and declinations of stars from those

of other stars, which have been determined before.

The observations give us the apparent places of the stars,

that is, the places affected with refraction *) and aberration and

referred to the equator and the apparent equinox at the time

of observation. It is therefore necessary to reduce these

places to mean places by adding the corrections which have

been treated in the two last sections. But the expressions
of each of these corrections contain a constant quantity, whose

numerical value must at the same time be determined by sim

ilar observations as those by which we find the places of

the stars. The values of these constant quantities given in

the last two chapters are those derived from the latest de

terminations, but they are still liable to small corrections by
future observations.

*) In the case of observations of the sun, the moon and the planets

these places are affected also with parallax.



198

If we observe the places of the fixed stars at different

times we ought to find only such differences as can be as

cribed to any such errors of the constant quantities and to

errors of observation. However, comparing the places de

termined at different epochs we find greater or less differences

which cannot be explained by such errors and must be the

effect of proper motions of the stars. These motions are

partly without any law and peculiar to the different stars,

partly they are merely of a parallactic character and caused

by the progressive motion of the solar system, that is, by
a proper motion of the sun itself. So far these proper mo
tions with a few exceptions can be considered as uniform

and as going on in a great circle. They must necessarily

be taken into account in order to reduce the mean places

of the stars from one epoch to the other.

The methods for computing the various corrections which

must be applied to the places of the stars have been given

in the two last sections; but as these computations must be

made so very frequently for the reductions of stars, still other

methods are used, which make the reduction of the appa
rent places of stars to their mean places at the beginning of

the year as short and easy as possible and which shall be

given now.

I. ON THE REDUCTION OF THE MEAN PLACES OF STARS TO
APPARENT PLACES AND VICE VERSA.

1. If we know the mean place of a star for the be

ginning of a certain year and we wish to find the apparent

place for any given day of another year, we must first reduce

the given place to the mean place at the beginning of this

other year by applying the precession and if necessary the

proper motion and then add the precession and the proper

motion from the beginning of the year to the given day as

well as the nutation and aberration for this day. Now in

order to make the computation of these three last corrections

easy, tables have been constructed for all of them, which
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have for argument the day of the year. Such tables have

been given by Bessel in his work Tabulae Regiornontanae&quot; *).

Let and d be the mean right ascension and declination

of a star at the beginning of a year, whilst a and $ designate

the apparent right ascension and declination at the time r,

reckoned from the beginning of the year and expressed in

parts of a Julian year. If then
(

w und .- designate the proper

motion of the star in right ascension and declination, which

is considered to be proportional to the time, we have ac

cording to the formulae (/)) in No. 2, (#) and (C) in No. 5

of the second section and (A) in No. 16 of the third section

the following expression:

a= 4- T [m-f-w tang sin a] -+- T ft

-
[15&quot;.8148 -+ 6&quot;.8650 tang S sin

]
sin ft

9&quot;.2231 tang 8 cos a cos ft

4- [OM902 -h 0&quot;.OS22 tang S sin
]
sin 2 ft

4- 0&quot;.OS96 tang S cos a cos 2 ft
-

[1&quot;.
1642 -f- 0&quot;.5054 tang S sin a] sin 2 Q

0&quot;.5509 tang S cos a cos 2 Q
H- [0&quot;.1173 4- 0&quot;.0509 tang S sin a] sin ( P)
-

[0&quot;.0195 4- 0&quot;.0085 tang 5 sin a] sin (0 4-P)
-

0&quot;.0093 tang 8 cos a cos (0 4- P)

20&quot;.4451 cos s sec 5 cos a cos

20&quot;.4451 sec sin sin

and:
S 8= 4- rn cos -f- Tp!

-
6&quot;.8650 cos a sin } H- 9&quot;.2231 sin a cos O

-f- 0&quot;.0822 cos a sin 2 ft 0&quot;.OS96 sin a cos 2 J~)

0&quot;.5054 cos a sin 2 4-0&quot;.5509 sin a cos 2

-hO&quot;.0509cosasin(0 P)
-

0&quot;.0085 cos a sin (0 4- P) -+- 0&quot;.0093 sin cos (0 4- P)

-h 20&quot;.4451 [sin a sin 8 cos cos 8 sin e] cos

-
20&quot;.4451 cos a sin S sin 0.

The terms of the nutation, which depend on twice the

longitude of the moon 2d and on the anomaly (L P of the

moon have been omitted here, as they have a short period

on account of the rapid motion of the moon and therefore

are better tabulated separately. Moreover these terms are

only small and on account of their short period are nearly

eliminated in the mean of many observations of a star. Hence

*) For a few stars it is necessary to add also the annual parallax, for

which the most convenient formulae shall be given hereafter.
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they are only taken into account for stars in the neighbour
hood of the pole, for which also the terms depending on the

square and the product of nutation and aberration *) become

significant. These terms are brought in tables, whose argu
ments are ([, 0, O-hO and O O.

Now in order to construct tables for the above expres
sions for a a and d

,
we put:

6&quot;.S650= nz 15&quot;.S148 mi = h

0&quot;.OS22 = ni, 0&quot;.1902 mi
l
= h

l

Q&quot;.5054= ni z 1&quot;.1642 mi 2
= fi 2

0&quot;.0509= ni 3 0&quot;.1173 m z 3
= / 3

0&quot;.0085= ni 4 0&quot;.0195 mil = /* 4 .

Then we can write the formulae also in this way:
n a=[r i sin ft -+- i

l
sin 2 } i 2 sin 2 -+- i 3 sin(0 P)

1 4 sin (0 -f- P)J [/ -+- w tang &amp;lt;? sin a]-
[9&quot;.2231 cosO 0&quot;.0896 cos 2O -f- 0&quot;.5509 cos 2

H-0&quot;.0093cos(0+P)] tangtfcosa
20&quot;.4451 cos s cos . cos a sec $

20&quot;.4451 sin . sin a sec S

P) 7* 4 s

and:

S S=[r isin^-Mi sin 2~} e 2 sin20-K 3 sm(0 P)
z 4 sin (0 -|- P)] n cos

+ [9&quot;.2231 cos D 0&quot;.0896 cos 2^ + 0&quot;.5509 cos 20
4- 0&quot;.0093 cos (0-f-P)] sin a

20&quot;.4451 cos E cos [tang e cos S sin sin
]

20&quot;.4451 sin . sin S cos a

If we introduce therefore the following notation :

A=r { sinH -Hi sin 2 i~} l a sin20-Hi 3 sin(0 P) / 4 sin (0-f-P)
,B= 9&quot;.223 1 cosO -I- 0&quot;.0896 cos 2^ 0&quot;.5509 cos 20 0&quot;.0093 cos(0H-P)
C == 20&quot;.4451 cos cos

/&amp;gt;= 20&quot;.4451sin0

^== 7/sin^-h^,sin2O A 2 sin20H- A 3 sin(0 P) A 4 s

a= w&amp;lt; -f- n tang $ sin n a!= n cos

ft = tang S cos b = sin

c = sec 8 cos c = tang e cos # sin # sin a

d= sec $ sin a d = sin S cos a,

*) These terms are given by the formulae (E) in No. 5 of the second

section and (c), (d) and (e) in No. 16 of the third section.
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we have simply:

Aa -+- Bb -f- Cc -+- Dd -+- r^ -f-

- Cc

where the quantities a, 6, c, d, a
,
6

,
c

,
d depend only on

the place of the star and the obliquity of the ecliptic, while

A, B, (7, D depend only on and H and thus being mere

functions of the time may be tabulated with the time for

argument.
The numerical values given in the above formulae are

those for 1800 and we have for this epoch:

i=0.34223 i, =0.00410 i z =0.02519 i 3 =0.00254 i 4
= 0.00042

A=0.0572 h
t
=0.0016 A 2 =0.0041 A 3

= 0.0005 A 4 =0.0000.

We see therefore that the quantity E never amounts to

more than a small part of a second, hence it may always
be neglected except when the greatest accuracy should be

required. As several of the coefficients in the above formulae

for a a and S are variable (according to No. 5 of the

second section) and likewise the values of m and w, we have

for the year 1900:

i=0.34256 i, =0.00410 * = 0.02520 i 3 =0.00253 z 4 =0.00042
A=0.0488 h l =0.0014 h z =0.0035 7*3=0.0005.

The values of the quantities A, B, C, D, E from the

year 1750 to 1850 have been published by Bessel in his work

,,Tabulae Regiomontanae&quot;. But as he has used there a dif

ferent value of the constants of nutation and of aberration

and also neglected the terms multiplied by P and 0-f-P,
the values given by him require the following corrections

in order to make them correspond to the formulae given
above :

For 1750:

dA 0.0090 sin ^ 4- 0.0001 sin 2^ + O.OOlo sin 20
H- 0.0025 sin (0 P) 0.0004 sin (0+P)

dB= 0.2456 cosO + 0.0019 cos2O + 0.0290 cos 2

-0.0093 cos (0 -HP)
d C= 0.1744 cos

(/&amp;gt;= 0.1 901 sin

dE= 0.006 sinO + 0.001 sin 2O
For 1850 the value of dB becomes:

dB= 0.2465 cosiH-0.0019cos 2^ -H0.0291cos20 0.0093 cos(0-f-P).
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The values of the quantities A, B etc. for the years 1850
to 1860 have been computed by Zech according to BesseFs

formulae, and for the years 1860 to 1880 they have been

given by Wolfers in his work Tabulae Reductionum Obser-

vationum Astronomicarum&quot;, where they have been computed
from the formulae given above. The values for each year
are published in all astronomical almanacs.

2. The arguments of all these tables are the days of

the year, the beginning of which is taken at the time, when
the mean longitude of the sun is equal to 280. Hence the

tables are referred to that meridian, for which the beginning
of the civil year occurs when the sun has that mean longi
tude. But as the sun performs an entire revolution in 365

days and a fraction of a day, it is evident, that in every

year the tables are referred to a different meridian.

Therefore if we denote the difference of longitude between

Paris and that place, for which at the beginning of the year
the mean longitude of the sun is 280, by &, which we take-

positive, when the place is east of Paris, and if further we de

note by d the difference of longitude between any other place
and Paris, taking it positive, when this place is west of Paris

and if we suppose both k and d to be expressed in time,

we must add to the time of the second place for which we
wish to find the quantities A^ B, C, D, E from the tables,

the quantity k-i-d and for the time thus corrected we must

take the values from the tables. The quantity k is found

from :

where L is the mean longitude of the sun at the beginning
of the year for the meridian of Paris, while a is the mean

tropical motion of the sun or 59 8&quot;. 33. This quantity is

given in the Tabulae Regiomontanae&quot; and in Wolfers&quot; Tables

for every year and expressed in parts of a day and the con

stant quantities A, B, C, D, E are given for the beginning

of the fictitious year or for 18 h 40m sidereal time of that me

ridian, for which the sun at the beginning of the year has

the longitude 280 and then for the same time of every tenth
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sidereal day*). If now we wish to have these values for any

other sidereal time, for instance for the time of culmination

of a star whose right ascension is
,
we must add to the

argument k-+-d the quantity:

a =
24h

~ =
24~

Furthermore as on that day, on which the right ascension

of the sun is equal to the right ascension of the star, two

culminations of the star occur, we must after this day add

a unit to the datum of the day, so that the complete argument

is always the datum plus the quantity:
k -h d -+- a -+- 1,

where we have i = from the beginning of the year to the

time, when the right ascension of the sun is equal to
,
while

afterwards we take i= 1 .

Now the day, denoted in the tables by Jan. 0, is that,

at the sidereal time 18 h 40m of which the year begins, the

commencement of the days being always reckoned from noon.

Hence the culmination of stars, whose right ascension is

&amp;lt; 18 h 40m does not fall on that day, which in the tables is

denoted by 0, but already on the day preceding and therefore

for such stars we must add 1 to the datum of the day reck

oned from noon or we must take i = 1 from the beginning

of the year to the day when the right ascension of the sun

is equal to a and afterwards i= 2.

We will find for instance the correction of the mean

place of Lyrae for April 1861 and for the time of culmi

nation for Berlin. We have for the beginning of the year:

a== 2783 30&quot; ^=+ 38 39 23&quot; =23&quot;27 22&quot; m= 46&quot;.062 logn= 1.30220

and from this we find:

*) We have therefore to use for computing the tables:

=
366 . 242201

Mean longitude of the sun= 280 -1- -

obb .

where n must be taken in succession equal to all integral numbers from

to 37. With this we find the true longitude according to I. No. 14. We
have also:

^=33 15 25&quot;.9 1920 29&quot; 53(t 1800)
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log a= 1 .4797 1 log a = 0.44889

log 6 = 9.04973 log b
1= 9.99569

log c = 9.25409 log c = 9.98106

log d= 0.10309,, log d = 8.94233
and besides we have:

log fi
= 9.4425 log/* = 9.4564.

Further we have according to Wolfers Tabulae Reductionum
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Therefore if we put: An= gcosG
B= g sin G

Am-i- E=f,
the terms for the right ascension become:

f-t-gsm(G-\r ) tang 8

and those for the declination:

g cos (G -f- a).

Further the aberration in right ascension is:

Csec $ cos a -f- D sec sin

and in declination:

(7 sin sin a -f- D sin $ cos a -f- C tang c cos S.

Hence if we put:
C= h sin // D = h cos /T t = C tang ,

the aberration in right ascension becomes:

h sin (H-\- a) sec #

and in declination:

h cos (H-+- a) sin $ -f- i cos $.

Therefore the complete formulae for the reduction to the

apparent place are:

a a=/4- g sin (G + a) tang 8-+- h sin (H -\- a) sec S -\- r/ii

S 8= gcos(G H- a) + A cos (//+) sin^-f-t cos^H-r//.

Here again for the quantities /*, g, h^ i, G and // tables

may be computed, whose argument is the time. They are

always published in all almanacs for every tenth day and for

mean noon.

If we wish to find for instance the reduction of a Lyrae
for 1861 April 10 at 17 h 15m mean time, this being the time

of culmination of a Lyrae on that day, we take from the

Berlin Jahrbuch for this time:

/==+26&quot;.98 &amp;lt;7=+12&quot;.20 =3443 A==+ 18&quot;.98 #=247 3 i= 7&quot;.58

hence G -\- a= 262 6 7/-h = 1656
cos(G-j-a) 9.13813, g sin (G -f- a) 1.0S222*

g 1.08636 tang S __M9.30L-
sin (G+ ) 9.99586a h sin (H-+- a) &quot;a68846~

cos (#-}-) 9.98515 cos^ 9.89260

h 1.27830 i _0^!967_
sin (IT -f- a) 9.41016 h cos (H-+- a) 1.26345

sin 8 9.79564

/=-|-26&quot;.98 ;cos$= 5&quot;.92

g sin (G+ a) tang =
9&quot;.67 ^ cos (G -+- )

= 1&quot;.68

sec ^=+ 6&quot;.25 h cos (#-f- a) sin 8= 11&quot;.46

r^ =-f- Q&quot;.Q8 r j =
^= 18&quot;.98.



206

4. The formulae (A) and (J5) for the reduction to the

apparent place do not contain the daily aberration nor the

annual parallax. For as the daily aberration depends upon
the latitude of the place, it cannot be included in general

tables
;
however for meridian observations the daily aberration

in declination is equal to zero and the expression for the

aberration in right ascension being of the same form as that

of the correction for the error of collimation, which must be

added to the observations, as we shall see hereafter, it may
in that case always be united with the latter correction.

The annual parallax has been determined only for very

few stars, but for those it must be computed, when the great

est accuracy is required. Now the formulae for the annual

parallax are according to No. 18 of the third chapter:

a a = 7i [cos sin a sin cos cos a] sec d

8 8= 7t [cos s sin sin d sin e cos 8] sin

TT cos sin 8 cos a.

Therefore if we put:

cos cos a= k sin K
sin a= k cos K

sin a sin 8 cos cos 8 sin e = I sin L
cos a sin 8 = I cos L,

we have simply:
a a= 7tk cos CAT-}- 0) sec 8

$ 8= nl cos (L 4-0).

But the cases in which this correction must be applied

are rare, for instance when observations of Centauri whose

parallax amounts to nearly 1&quot; or those of Polaris are to be

reduced.

II. DETERMINATION OF THE RIGHT ASCENSIONS AND DECLINATIONS
OF THE STARS AND OF THE OBLIQUITY OF THE ECLIPTIC.

5. If we observe the difference of the time of culmi

nation of the stars, these are equal to the difference of their

apparent right ascensions expressed in time. We need there

fore for these observations only a good clock, that is, one

which for equal arcs of the equator passing across the me-
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ridian gives always an equal number of seconds
*
) and an

altitude instrument, mounted firmly in the plane of the me

ridian, that is, a meridian -circle. This in its essential parts

consists of a horizontal axis, lying on two firm Y- pieces,

which carries a vertical circle and a telescope. Attached to

the Y-pieces are verniers or microscopes, which give the arc

passed over by the telescope by means of the simultaneous

motion of the telescope and the circle round the horizontal axis.

In order to examine the uniform rate of the clock without

knowing the places of the stars themselves, the interval of

time is observed in which different stars return to the me
ridian or to a wire stretched in the focus of the telescope

so that it is always in the plane of the meridian when the

telescope is turned round the axis **). Now the time

between two successive culminations of the same star is equal
to 24 h

-f-/\, where &a is the variation of the apparent

place during those 24 hours. Therefore if the observations

were right and the instrument at both times exactly in the

plane of the meridian, a condition which we here always as

sume to be fulfilled, the intervals between two culminations

measured by a perfectly regulated clock would also be found

equal to 24 h
-|-/\. But on account of the errors of single

observations, we can only assume, that the arithmetical mean
of the interval found from several stars minus the mean of

all A is equal to 24 hours. On the contrary if we find,

that this arithmetical mean is not equal to 24 hours but to

24h a
,
we call a the daily rate of the clock and we must

correct all observations on account of it. In case that for

a certain time all the different stars give so nearly the same

difference 24 h
a, that we can ascribe the deviations to pos

sible errors of observation, we take the rate of the clock

during this time as constant and equal to the arithmetical mean

*
) It is not necessary to know the error of the clock, as only intervals

of time are observed.

**) Usually there is a cross of wires, one wire being placed parallel to

the daily motion of the stars. This is effected by letting a star near the

equator run along the wire and by turning the cross by a screw attached to

the apparatus for this purpose , until the star during its passage through the

field does not leave the wire.
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of all single a and we multiply the observed differences of

right ascensions by ^ ,
in order to correct them

l ~ii
for the rate of the clock. But if we see that the rate of the

clock is increasing or decreasing with the time and the ob

servations are sufficiently numerous, we may assume the

hourly rate of the clock at the time t as being of the form

a~i-b(t T), where a is the rate at the time T. Multiplying
this by dt and integrating it between the limits t and 24-f-f,
we find the rate between two successive culminations of a

star, whose time of culmination is
, equal to:

24aH-24&(12-M T} = u.

If we compute therefore the coefficient of b for every
star and then take u equal to the rate found from the several

stars, we obtain a number of equations, from which we can

find the values of a and b by the method of least squares.
The rate during the time t&quot;

- - t we find then by means of

the formula:
t / i /&quot; i

a(t&quot;-t ) -h b(t&quot;-t ) |^P-
-
Fj

,

and we must correct every interval of time t&quot; t accord

ing to this.

In case that already the differences of the right ascen

sions of a number of stars are known, the difference of the

apparent place of each star and of the time U observed by
the clock, gives the error of the clock A #, which ought to

be found the same (at least within the limits of the errors

of observation) from all the different stars, if the clock is

exactly regulated. But if it has a rate equal to a at the

time T, each star gives an equation of the following form:

= U a -f- AZ7+ a (t T) -+
|-

(t T)
2

and from a great number of stars we may find A
U&amp;lt;&amp;gt;

a and b *).

Now in order to observe the time of culmination of the

stars, it is necessary to rectify the meridian circle in such

*) As we suppose that the right ascensions themselves are not known

yet, at least not with accuracy, the error of the clock U would also be

erroneous.
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a way, that the intersection of the cross wires is in the

plane of the meridian in every position of the telescope or

that at least the deviation from the meridian is known*).
If the line of collimation, that is, the line from the centre

of the object-glass to the wire-cross is vertical to the axis

of the pivots (the axis of revolution of the instrument), it

describes when the telescope is turned a plane, which in

tersects the celestial sphere in a great circle. If besides the

axis of the pivots is horizontal, this great circle is at the

same time a vertical circle and if the axis is directed also

to the West and East points, the line of collimation must

always move in the plane of the meridian. Hence the instru

ment requires those three adjustments.
As will be shown in No. 1 of the last section, we can

always examine with the aid of a spirit-level, whether the

axis of the pivots is horizontal and we may also correct any
error of this kind, since one of the Y-pieces can be raised or

lowered by adjusting screws. The position of the line of

collimation with respect to the axis can be examined by re

versing the whole instrument and directing the telescope in

each position of the instrument to a distant terrestrial object
or still better to a small telescope (collimator) placed for

this purpose in front of the telescope of the meridian circle

so that its line of collimation coincides with that of the

meridian circle. For if there is a wire-cross at the focus of

this small telescope, it can be seen in the telescope of the

meridian circle like any object at an infinitely great distance,

since the rays coming from the focus of the collimator after

their refraction by its object glass are parallel. Now if the

angle, which the line of collimation makes with the axis of

the meridian circle, differs by x from a right angle, the angles
which the lines of collimation of the two telescopes make
with each other in both positions of the meridian circle, will

differ by 2x or the wire of the collimator as seen in the

*) The complete methods for rectifying the meridian circle and for de

termining its errors as well as for correcting the observations on account

of them, are given in the seventh section. Here it is only shown, that

these determinations can be made without the knowledge of the places of

the stars.

14
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telescope of the meridian circle will appear to have moved

through an angle equal to 2x. Therefore if we move the

wires of the meridian telescope by the adjusting screws in a

plane vertical to the line of collimation through the angle a?,

the line of collimation will be vertical to the axis and the

wire of the collimator will remain unchanged with respect

to the wires of the telescope in both positions of the in

strument or to speak more correctly it will in both positions

be at the same distance from the middle wire of the teles

cope. If this should not be exactly the case, the operation

of reversing the instrument and moving the wires of the tele

scope must be repeated.

When these corrections have been made, the line of col

limation describes a vertical circle. At last in order to di

rect the horizontal axis exactly from East to West, we must

make use of the observations of stars, but a knowledge of

their place is not required. The circumpolar stars, for in

stance the pole-star, describe an entire circle above the hori

zon, except at places near the equator. Therefore if the

telescope moves in a vertical circle which is at least near

the meridian, the line of collimation intersects the parallel

circle twice, and the star can therefore be seen in the tele

scope twice during one entire revolution. If we observe now
the time of the passage of the star over the wire at first

above and then below the pole and the telescope is accu

rately in the plane of the meridian, the interval between the

two observations will be 12 h
-f- &&amp;gt; where j\a designates the

variation of the apparent right ascension of the star in 12

hours
;
on the contrary, the interval will be greater or less

than 1 2 h
-|- /\ ,

if the plane of the telescope is East or West
of the meridian. Now as one of the Y-pieces admits always
of a motion in the direction from North to South, wre can

move this until the interval between two observations is ex

actly 12 h -f-A and when this has been accomplished the

telescope is exactly in the plane of the meridian or the axis

is directed from East to West *).

*) As the complete adjustment of an instrument would be impracticable

on account of the continuous change of the errors, it is always only approx-
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We can also compare the intervals between three suc

cessive culminations with each other, as these must be equal
if the instrument is accurately in the plane of the meridian.

If the intervals are unequal, the telescope is on that side of

the meridian, on which the star remains the shortest time.

If now we observe with an instrument thus adjusted the

times of transit of stars, we find the differences of the ap

parent right ascensions and we must apply to these the re

ductions to the apparent place with the opposite sign in

order to find the differences of the mean right ascensions

referred to the beginning of the year. But the computation
of the formulae for these corrections requires already an

approximate knowledge of the right ascension and declina

tion, which however can always be taken from former cata

logues.

If the observed object has a visible disc, we can only
observe one limb and as such objects have also a proper

motion, we must compute the time of its semi-diameter pass

ing across the meridian according to No. 28 of the first

section, and we must add this time to the observed time if

we have observed the first limb or substract it from it, if

we have observed the second limb. In case of the sun hav

ing been observed, where both limbs are usually taken, we
can simply take the arithmetical mean of both times of ob

servation.

The time of culmination of a star may be determined

still by another method, namely by observing the time,

at which the star arrives at equal altitudes on both sides

of the meridian. For these observations a circle is required,

which is attached to a vertical column admitting of a motion

round its axis in order that the circle may be brought into

the plane of any vertical circle. If we observe with such

an instrument the time, when a star arrives at equal alti

tudes on both sides of the meridian, the arithmetical mean of

both times is the clock-time of the culmination of the star.

It is evident, that it is not necessary to know the altitude

imatcly adjusted and the observations are corrected for the remaining errors,

which have been determined by the above methods or by similar ones, which

will be given in the last section.

14*
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of the star itself, but it is essential, that the telescope in

both observations has exactly the same inclination to the

horizon. If there is a difference of the two inclinations and

this is known, we can easily compute the error of the clock-

time of culmination produced by it; for if the zenith distance

on the West side has been observed too great, the star has

been observed in an hour angle which is too great by

-

, hence we must subtract from the arithmetical
cos tp sin A

A -*

mean of both times the correction ^ . Such a cor-
cos cp sm A

rection is always required on account of refraction; for

although the mean refraction is the same for both observa

tions, yet the different state of the atmosphere, as indicated

by the thermometer and barometer, will produce a slight

difference of the refraction, whose effect can be computed

by the above formula. In case of the sun being observed

the change of the declination during the interval of both

observations will also make a correction necessary.

We see from the formula
-^
= cos

(f&amp;gt;

sin A^ that it is best

to observe the zenith distances of the stars in the neigh
bourhood of the prime vertical, because their changes are

then the most rapid. It is also desirable, to make these

observations at a place not too far from the equator, because

then cos
(f

is also equal to 1, and to observe stars near the

equator. As the determination of absolute right ascensions

depends upon such observations, it may be made with ad

vantage by this method at a place near the equator.

6. If we bring the stars at the time, when they cross

the vertical wire of the meridian circle, on the horizontal

wire and read the circle by a vernier or a microscope, the

differences of these readings for different stars give us the

differences of their apparent meridian altitudes*), and if we
know the zenith point of the circle and subtract this from

*) In the seventh section the corrections will be given, which must be

applied to these readings in order to free them from the errors of the in

strument, for instance the errors of division of the circle, or errors pro

duced by the action of the force of gravity upon different parts of the in

strument.
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all readings, we find the apparent zenith distances of the

stars.
&quot;

This point can be easily determined by observing the

images of the wires reflected from an artificial horizon. For
if we turn the telescope towards the nadir, and place a basin

with mercury under the object glas and reflect light from

the outside of the eye-piece towards the mercury, we see in

the light field besides the wires also their reflected images.
Therefore if we turn the telescope until the reflected image
of the horizontal wire coincides with the wire itself, the line

of collimation must be directed exactly to the nadir, hence

we find by the reading of the circle the nadir point or by
adding 180 the zenith point of the circle.

The apparent zenith distances must first be corrected

for refraction and if the sun, the moon or the planets have

been observed, also for parallax by adding to them the re

fraction computed according to formula A in No. 12 of the

third section and by subtracting p sin ss, where p is the

horizontal parallax *). If the object has a visible disc, we
must add to or substract from the zenith distance of the

limb, corrected for refraction and parallax, the radius of the

disc or if in case of observations of the sun, the lower as

well as the upper limb has been observed, we must take the

arithmetical mean of both corrected observations. Since in this

case these observations are made at a little distance from the

meridian, it is still necessary to apply a small correction

(whose expression will be given in the seventh section) be

cause the horizontal wire represents a great circle on the

celestial sphere and therefore differs from the parallel of

the sun.

When the zenith distances at the time of culmination

are known, the decimations are found according to No. 23

of the first section, if the latitude of the place of obser

vation is known. But the latter can always easily be deter

mined by observing the zenith distances of any circumpolar
star in its upper and lower culmination, as- the arithmet

ical mean of these zenith distances corrected for refraction

-r-|A&amp;lt;?
is equal to the co- latitude of the place, where

A&amp;lt;?

*) In the case of the moon the rigorous formula must be used.
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denotes the variation of the apparent declination during
the interval of time. We may also determine the latitude

by observing any circumpolar star in its upper and lower

culmination as well direct as reflected from an artificial ho

rizon. For then the arithmetical mean of the corrected alti

tudes minus |A^ is equal to the latitude. But as the re

flected observations cannot be made at the same time as the

direct observations, usually also several observations are taken

before and after the time of culmination, we must reduce

first each observation to the meridian by the method given
in the seventh section.

If the place of observation is in the neighbourhood of

the equator, the method of determining the latitude by cir

cumpolar stars cannot be used. At such a place we must

determine it by observations of the sun as will be shown in

the next number.

When the latitude has been determined we find from

the zenith distances corrected for refraction the apparent de

cimations of the stars, which are converted into mean decli

nations for the beginning of the year by applying the reduc

tion to the apparent declination with the opposite sign.

7. If A and D be the right ascension and declination

of the sun, we have:

sin A tang = tang D,

hence the observation of the declination of the sun gives us

either the obliquity of the ecliptic, when the right ascension

is known
,
or the right ascension

,
when the obliquity of the

ecliptic is known from other observations. But the differen

tial equation (which we get by differentiating the above equa
tion written in a logarithmic form)

2de 2dD
cotang A .&amp;lt;lA-\- -. =- = 7777;sm 2e sm 2Z&amp;gt;

shows, that it is best, to determine the obliquity of the ecliptic

by observations in the neighbourhood of the solstices and the

right ascension by observations in the neighbourhood of the

equinoxes. If we determine the declination of the sun ex

actly at the time,, when the right ascension is equal to 90

or 270 we find immediately by subtracting the latitude of

the sun the obliquity of the ecliptic. But even if we only
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.

observe the declination in the neighbourhood of the solstice

and know approximately the position of the equinox, we can

compute the obliquity of the ecliptic either by the above for

mula or better by developing it in a series.

If we denote by D the observed declination, by B the

latitude of the sun, the declination of the sun corrected for

the latitude, which would have been observed, if the centre

of the sun had been in the ecliptic, will be according to

the formulae in the Note to No. 11 of the first Section:

ff-^ -B^D.
cos/)

Moreover if x is the distance of the sun from the sol

stitial point expressed in right ascension or equal to 90 A^

we have the following equation:

cos x tang e tang D,

and as x is a small quantity, we can develop & into a rap

idly converging series, for we find according to formula (18)

in No. 11 of the introduction:

= /)-+- tang ^ x 2
. sin 2D -f- ^ tang 4- x* sin 4D H- . . . (A)

Thus we can easily find the obliquity of the ecliptic

from an observation of the sun in the neighbourhood of the

solstitial points. It is evident, that the aberration, as it

affects merely the apparent place in the ecliptic, has no in

fluence whatever upon the result, nor is the value of e changed,

if A and D are reduced to another equinox by applying the

precession. But if A and D are the apparent places, affected

with nutation, the value of g, which we deduce from them, will

be also the apparent obliquity of the ecliptic ,
affected with

nutation.

On the 19 th of June 1843 the declination of the sun was

observed at Koenigsberg and after being corrected for re

fraction and parallax was found equal to -+- 23 26 8&quot;. 57. At

the same time the right ascension of the sun was 5h 48m 50 s
. 54.

Hence we have in this case x= O h llm 9 s
. 46 = 247 21&quot;.90

and as the latitude of the sun was equal to -4-0&quot;. 70, we have:

Z&amp;gt;
= -4-2326 7&quot;. 87

I. term of the series = +1 29 . 23

II. term of the series = + . 04

= 23 27 37&quot;. 14.
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This is the apparent obliquity of the ecliptic on the 19th

of June 1843, as deduced from this one observation. If we

compute now the nutation according to the formulae in No. 5

of the second section, taking ft = 272&quot; 37 . 4, = 87
,

(( = 350 17 and P= 280&quot; 14
,
we find A = -+- 0&quot;.05, hence

the mean obliquity on that day according to that one ob

servation is 23 27 37&quot;. 09.

We should find the same value only in a more circuitous

way by correcting A and D for nutation according to the for

mulae in No. 5 and 7 of the second section and computing
the formula (A) with these corrected values. As the nutation

in longitude is equal to -f- 17&quot;. 18, we find face = -f- 1 s
. 25,

A =
H-0&quot;.39, therefore:

Corrected D= 23 26 7&quot;. 48

I. term -h 1 29 . 57

II. term 4^0 . 04

Mean obliquity =23 27 37
77
7o~9^

In order to free the result from accidental errors of ob

servation, the decimation of the sun is observed on as many
days as possible in the neighbourhood of the solstices and

the arithmetical mean taken of all single observations. But

any constant errors, with which x and D are affected, will not

be eliminated in this way. If we denote the value of the

obliquity of the ecliptic which has been computed from x
and D according to the above method by ,

its true value

by ,
the errors of x and D by dx and dD, each observation

gives an equation of the following form:

= -j- V5

tang j? sin 2 e dx -+- ^T ^~ dD,
sin Z U

which is easily deduced from the differential equation given
before and in which dx is expressed in seconds of time. We
have for instance for the above example:

s= 23 27 37&quot;. 09 -f- 0.212 dx -f- 1.001 dD,

from which we see, that an error in aj, equal to a second of

time, produces only an error of 0&quot;. 21 in the obliquity of

the ecliptic. If we assume then a certain value
, taking= -r-e/fi and e

()
e =n, we find from each observation

an equation of the following form:

sin 2 e
,= n -f- as v tang x sin s dx dD.

sin2Z&amp;gt;
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By applying to them the method of least squares, we

can find de as a function of dx and e?D, hence if we should

afterwards be obliged to alter the right ascensions or the de

clinations of the sun by the constant quantities dA = dx

and dD, we can easily compute the effect, which these al

terations have upon the value of the obliquity of the ecliptic.

Hence we may assume, that the most probable value of the

obliquity of the ecliptic, deduced from observations in the

neighbourhood of a certain solstice, is of the following form:

e -i-adD-+- bdx,

where the coefficient of (ID is always nearly equal to unity.

Now if there are no constant errors in D and #, or if dD
and dx are equal to zero, we ought to find from observations

made in the neighbourhood of the next solstice nearly the

same value of
,

the difference being equal to the secular

variation during the interval of time, which amounts to 0&quot;. 23.

But since accidental errors committed in taking the single

zenith distances or accidental errors of the refraction are

not entirely eliminated in the arithmetical mean of all ob

servations made in the neighbourhood of the same solstice,

we can only expect to arrive at an accurate value of the

mean obliquity of the ecliptic by reducing the values derived

from a great many solstices to the same epoch and in this

case we may determine at the same time the secular varia

tion. If we have found from observations the mean obliquity
of the ecliptic at the time t equal to e and if we suppose,
that the true value of the obliquity at the time t is equal
to e

(} -\-ds and that the annual variation is A^-f-^5
we should

have the equation :

= -h tie (A e + ar) (t * )

in case that the observed value were right. Hence if we take :o

o A (t O e= n,

every determination of the mean obliquity of the ecliptic at

the time of a solstice gives an equation of the following form :

= n -f- ds -f- x (t t }

and if there have been several such determinations made, we
can find from all equations the most probable values of de

and x according to the method of least squares. In this way
Bessel found from his own observations and those of Brad-
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ley the mean obliquity of the ecliptic for the beginning of the

year 1800 equal to 23 27 54&quot;. 80 and the annual variation

0&quot;.457. Peters comparing Struve s observations with those

of Bradley found:

23 27 54&quot;. 22 0&quot;.4G45 (t 1800)

a value which now generally is considered as more exact.

If a constant error has been committed in observing the

declinations
,

if for instance the altitude of the pole is only

approximately known, the values of the obliquity derived from

summer or winter solstices will show constant differences.

Since we have D= z -4-
cp

and if we denote by d
&amp;lt;f

the cor

rection which must be applied to the altitude of the pole,

by s the true value of the obliquity of the ecliptic, by e the

value deduced from observations, we have the following equa
tion from a summer solstice:

= e +
Cfd&amp;lt;f&amp;gt;,

and for a winter solstice:

*,
=

e&quot; rt rfy

hence we have:

where e s
t

is the secular variation during the interval of

time. This is the correction which must be applied to the

latitude, if a constant error has been committed in observ

ing the zenith distances. We can find in this way an ap

proximate value of the latitude by observing the zenith dis

tance of the sun on the days of the summer and winter sol

stice. For if z and z&quot; are those zenith distances corrected

for refraction, parallax and nutation, taken negative if the

sun culminates on the north side of the zenith, we have:
~

[

&amp;lt;&amp;gt;

9*
=
-2

8. If then the obliquity of the ecliptic be known, the

absolute right ascension of a star and hence from the dif

ferences of right ascensions that of all stars may be found

with the utmost accuracy. For this purpose a bright star

is selected, which can be observed in the daylight as well as

by night and which is in the neighbourhood of the equator,

for instance a Canis minoris (Procyon) or a Aquilae (Altair).
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If then the transit of the star is observed at the time
,
that

of the sun at the time T, the interval t T, corrected for

the rate of the clock, is equal to the difference of the right

ascensions of the star and the sun at the time of culmination

of the latter. If now also the true declination of the sun

has been determined at the time of culmination, we find the

right ascension of the sun from the following equation :

sin A tang e= tang Z&amp;gt;,

and we have therefore:

. tang D
a = arc sin --h / T,

tang e

where strictly the time T must also be corrected for the lat

itude of the sun by adding -J- cos A sec d sin s p.

If now D and s be in error, we shall on this account

also obtain an erroneous value oft T, independently of er

rors of observation in t T. In order to estimate the effect

of any such errors, we use the differential equation found in

the preceding No. :

and consequently we obtain from each observation an equa
tion of the following form:

. tang D 2 tang A , 2 tang A= arcsin H- / T- ds -\
--- -

&amp;lt;ID. (A)
tangs sm2f sin 2 Z)

We easily see from this equation, that it is best to make
these observations in the neighbourhood of the equinox, be

cause then the coefficients of ds and dD arrive at their min

imum, that of ds being zero and that of dD being cotang s

or 2.3. Moreover we see that it is possible to combine sev

eral observations in such a way, that the effect of an error

in s as well as of any constant error in I) is eliminated. For

if in the equation sin A = --^? we take the ande A always
tang s J

acute, we have, when the right ascension of the sun is 180 4
,

the following equation:

=180 arc sin ^ ^-f. f_I&quot; -+.

v

&quot;6&quot;&amp;lt;/
_&quot;

tang sin 2 e sin 2 D
where i and T are again the times of transit of the star
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and the sun, and if wo combine this equation with the former,

we find:

( 7
7

)] H- i arc sin arc sin -f- 180
tang e tang e

-
tang -1

&amp;lt;*.. ()sm 2 e

If now the acute angle A = A, then we have also D = D.

If therefore the difference of right ascensions of the sun and

the star be observed at the times when the sun has the right

ascensions A and 180 A, the coefficients of dD and ds in

equation (I?) will be equal to zero and the constant errors

in the declination and the obliquity will thus have no effect

on the right ascension of the star. This it is true will never

be attained with the utmost rigour, as it will never exactly

happen, that, when the sun at one culmination has the right

ascension A^ the right ascension 180 A shall exactly cor

respond to another culmination. But if A be only nearly

equal to 180 -A, the remaining errors dependent on dD
and ds will be always exceedingly small.

Therefore for the determination of the absolute right

ascension of a star, the difference of right ascensions of the

sun and the star should be observed in the neighbourhood of

the vernal and autumnal equinoxes. But if one observation

has been made after the vernal equinox, the second must be

made as much before the autumnal equinox and vice versa.

If we combine any two such observations, the effect of any
constant errors in D and 6 is eliminated and the result is

only affected with casual errors, which may have been com

mitted in observing the times of transit or the declinations.

These can only be got rid of in a mass of observations and

hence it is necessary to combine not only two such obser

vations but as great a number as possible of observations

taken before and after the \7ernal and autumnal equinox, in

which case it is not necessary to confine the observations to

the immediate neighbourhood of the equinox. Let be an

approximate value and = -+- d a the true value of the

right ascension and put:

. tang/)
a n arc sin ----

(t i )
= n.

tangs
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Then each observation gives an equation of the following
form :

-2 tang A 2 tang A= n-ha4- da .

-- rfZ).
sin 2 e sin 2 D

If we treat then all those equations according to the

method of least squares, we can find the most probable val

ues of da, ds and dD or at least da as a function of de, and

dD, so that, if these should be found from other observations

and their values be substituted in the expression for da, we

get that correction da which in connection with these determi

nate values of de and dD makes the sum of the residual

errors a minimum. In case that the number of observations

is very great and the observations are well distributed about

the equinoxes, the coefficients of ds and dD in the final

equation for da will always be very small.

If the observations extend to a great distance from the

equinoxes and the observed declinations lie between the lim

its =p Z&amp;gt;,

it may not be accurate to take dD for the entire

range 2D as constant, for instance, in case that the circle-

readings are affected with errors dependent on the zenith dis

tance, or if the constant of refraction should need a correc

tion. Although even in this case these errors have no effect

upon the result, if the observations are distributed symmet
rically around the equinoxes, yet the resulting value of dD
or the term dependent on dD in the final expression of da
would have no meaning. In this case it is necessary to di

vide the observations according to the zenith distance into

groups, within which it is allowable to consider the error

dD as constant and to treat those several groups according
to the method of least squares. Since we have D=

(p
z p,

if the object is south of the zenith, we may take instead of

dD in the above equation
dcf&amp;gt;

dk tang z fifty, where
dk denotes the correction of the constant of refraction and

fifty the correction which must be applied to the circle-

readings. But for determining the values of these quantities,

there are generally other and better methods used.
*
Bessel observed in 1828 March 24 at Koenigsberg the

declination of the sun s centre, corrected for refraction and

parallax :
&amp;gt; = + 1 15 27&quot; . 24
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and the interval between the transit of the sun and the star

a Canis minoris, corrected for the rate of the clock:

t r=?h 19 &quot; 29*. 86.

As the latitude of the sun was -4-0&quot;. 21, the correction

of the declination is 0&quot;.19, whilst that of the time is noth

ing. Now the values D and T referring to the sun, need

not be corrected for aberration, since this merely changes
the place of the sun in the ecliptic, but for the star we find

according to formula (A) in No. 16 of the third section, as

the longitude of the sun is 3 10 and the approximate place
of the star a = 112 46 and d= -+- 5 37 :

a 1

ft= s
. 42.

This being subtracted from the time
,
we find:

t T=l^ 19 &quot; 29 s
. 44

Z) = + 1 15 27&quot;. 05,

both being referred to the apparent equinox at the time of the

observation. If we take now for the mean obliquity on that

day 23 27 35&quot;. 05, we must add to it the nutation in order

to find the apparent obliquity at the time of observation.

But as:

^ = 27713 .8, O = l 14
, (1

= 283&quot; 56
,
P= 280 14

we find by the formula in No. 5 of the second section

A* = -+- 1&quot;.72, hence:

= 23 27 36&quot;. 77.

and with this we find:

A = arc sin -^-^= 2
&quot; 53 57&quot; . 44= 0&quot; 1 1 35 s

. 83.
tang e

Hence the right ascension referred to the apparent equi

nox is:

a = l\&amp;gt; 31 5 S
. 27

and adding the nutation in right ascension -4- 1 s
. 10 and sub

tracting the precession and proper motion from the begin

ning of the year to March 24 equal to -f-0 s .71 (since the

annual variation is -}-3 s

.146) and computing the coefficients

of dD and de, we find according to this observation the

mean right ascension of a Canis minoris for 1843.0 ,

a= 7 1

31&quot; 3 s .46 -h 0. 1539 dD 0. 0092 de,

where dD and de are expressed in seconds of arc.
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On the 20th of September of the same year Bessel ob

served :

Z) = +l 16 29&quot;. 22

/ T 4 h
17&quot; 5. 82.

As on that day the latitude of the sun was B = 0&quot;. 56,

and n = 267 41 . 9, 0=178 39
,
(1= 135 41

,
P=28014

,

we find the corrections dependent on B equal to 0&quot;.51

and -J-0
S

.01; furthermore the aberration is = 0\l56, the

nutation of the obliquity is -j-0&quot;.27, hence, as the mean

obliquity was on that day 23&quot; 27 34&quot;. 82, we find:

Z&amp;gt;
= -t-l 16 29&quot;. 73

t r = 4 h 17m 5.27
e= 23 27 35&quot;. 09.

From this we get A = 2 56 22&quot;. 36 = 0&quot; 11 45 s
. 49,

hence the right ascension of the sun equal to H h 48 in 14 s
. 51,

therefore a = 7 h 31 ni 9 s
. 24 and as the nutation was -(-1

s
. 11,

the precession and proper motion equal to -f-2 s

.27, we find

according to this observation the mean right ascension for

1843.0

a = 7 31 5s . 86 0. 1539 dD -h .0094 de.

Taking the arithmetical mean of both determinations we
find:

= 7h 31 4 S .66*).

a result which is free from the constant errors in D and s.

We might have deduced the mean right ascension by
subtracting from

Z&amp;gt;,

T and t the reductions to the apparent

place, neglecting for the sun the terms dependent on aber

ration. Then using the mean obliquity for each day, we
would have found immediately the right ascension referred

to the mean equinox for the beginning of the year.

9. When the right ascension of one star has been thus

determined, the right ascensions of all stars, whose differen

ces of right ascension have been observed, are known also

and can be collected in a catalogue together with the decli-

*) According to Bessel s Tabulae Regiomontanae is a= 7 h 31 1U 48
. 81.

As the arithmetical mean of both observations agrees so nearly with this,

the .casual errors on both days must have been also nearly equal. If we
compare the two observed declinations with the solar tables we find the

errors of the declinations equal to + 7&quot;. 67 and 8&quot;. 24.
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nations. Thus the right ascensions given in the catalogues
of different observers can have a constant difference on ac

count of the errors committed in the determination of the

absolute right ascension. This can be determined by com

paring a large number of stars, contained in the several ca

talogues, after reducing them to the same epoch. Similar

differences may occur in the decimations and can be deter

mined in the same way. But since these errors may be va

riable, as was stated before, one must form zones of a cer

tain number of degrees and determine the difference for these

several zones.

In order to facilitate the relative determination of the

places of stars as well as of planets and comets, the appa
rent places of some stars, which have been determined with

great accuracy and are therefore called standard stars, are

given in the astronomical almanacs for the time of culmina

tion for every tenth day of the year. Thus in order to find

the right ascension and declination of an unknown object,

one compares it with one or several of these standard stars,

determining according to the methods given before the dif

ference of right ascension and declination. In case that the

declination of the unknown object differs little from the stan

dard star, any errors of the instrument will have nearly the

same effect upon both observations and hence their difference

will be nearly free from those errors.

If the unknown object whose difference of right ascen

sion and declination is to be determined, should be very near

the star, one can use for the observation instead of a meri

dian instrument a telescope furnished with a micrometer (which
will be described in the seventh section). This method has

this advantage, that the observation can be repeated as often

as one pleases and that it is not necessary to wait for the

culmination of the object, which moreover might happen at

daylight and thus frustrate the observation of a faint object.

This method is therefore always used, if one wishes to ob

serve the relative places of stars very near each other or

the places of new planets and comets. For this purpose it

is necessary to have a large number of stars determined, so

as to be able to find under all circumstances stars, by which
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the object can be micrometrically determined. Therefore on

this account as well as in general for an extensive knowledge
of the fixed stars, large collections of observations of stars

down to the ninth and tenth magnitude have been made and

are still added to. In order to seize as many stars as pos

sible and at the same time to facilitate the reduction of the

stars to their mean places, the observer takes every day only

such stars, which form a narrow zone of a few degrees in

declination and observes the clock -times of transit and the

circle -
readings for every star. Such observations are called

therefore observations of zones. A table is then computed
for every zone, by which the mean place of every star for

a certain epoch can be easily deduced from the observed

place and since such tables can be easily recomputed, when
ever more accurate means for their computation, for instance

more accurate places of the stars, on which they are based,

are available, the arangement of these observations in zones

is of great advantage.
If now t be the observed transit of a star over the

wire of the instrument, z the circle -reading, it is necessary
to apply corrections to both in order to find the mean right

ascension and declination of the star for a certain epoch.

We must apply to t the error of the clock, the deviation of

the wire from the meridian, the reduction to the apparent

place with opposite sign, and the precession in the interval

between the time of observation and the epoch, whilst we
must apply to z the polar point of the circle, the errors

of flexure and division, the refraction and, as before, the

reduction to the apparent place with opposite sign and the

precession. Bessel has introduced a very convenient form

for tabulating these corrections. First a table is constructed,
which gives for every tenth minute of the clock -time t oc

curring in the zone the values k and d of these corrections

for the declination D corresponding to the middle of the

zone, and besides another table, which gives the variations of

these corrections for a variation of the declination equal
to 100 minutes. The mean right ascension and declination

of any star for the assumed epoch is then found by the for

mulae :

15
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where Z denotes the circle-reading corresponding to the middle

of the zone.

If we denote by u and ri the error of the clock and its

variation in one hour, by e and e the deviation of the wire

from the meridian corresponding to the position Z and its

variation for 100 minutes, by P the polar point, by o and

.&amp;lt;? the refraction and the errors of division and flexure, by (&amp;gt;

and s their variations for 100 minutes, at last by A and

&d the reductions to the apparent place and if we assume,

that the divisions increase in the direction of declination and

that we take as epoch the beginning of the year, we have:

But according to the formulae in No. 3 we have:

A = ~ -h p sin ( G -+- a) tang D + -^ sin ( // -+- ) sec D,

L

(sin C+ ) *
$ln

,a,, g D H
^lo cosZ&amp;gt;

2 la cos /&amp;gt; J 100

& = g cos (6r -h a) -h /&amp;lt; cos (ff-\- ) sin Z) H- z cos Z&amp;gt;

-h 7i cos (H-{- a) cos I&amp;gt; 100 i sin Z) 100 I

-

hence we find:

~-^ ~s\\\(G-{-a}tgD -^-si
1 1 i

- 1QO
, + *

sin(ff ,

tang 1*
,

la cos D~ la cos D
d= P4- 90 =F

(&amp;gt;

H- *
.9

cos (G -h a) h cos (f/-f- ) sin D ? cos Z),

d = =F (/ 4- .s

r

[A cos (//-h ) cos Z&amp;gt; 100 -j- i sin D 100 ].

The error of the clock and the polar point of the

circle are determined by any known stars, which occur in

the zone, or by the standard stars, if any of them have been

observed before and after observing the zone-stars and if theO
errors of the instrument, as well as the polar point and

the rate of the clock can either be considered as constant or

be interpolated from those observations. The values of A
1

,
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k\ d and d are then tabulated for every tenth minute of

the clock time t and may thus be easily interpolated for any
other value of t.

ITT. ON THE METHODS OF DETERMINING THE MOST PROBABLE
VALUES OF THE CONSTANTS USED FOR THE REDUCTION OF

THE PLACES OF THE STARS.

A. Determination of the constant of refraction.

10. It was shown in No. 6, how the apparent zenith

distances of stars are determined by observations which first

must be cleared from refraction, in order to obtain the true

zenith distances. If the zenith distance of a circumpolar star

be observed at its upper and lower culmination and corrected

for refraction as well as for the small variations of the aber

ration, nutation and precession in the interval between the

two observations, the arithmetical mean of the two corrected

zenith distances is equal to the complement of the latitude.

Now if a set of such observations of different stars is made,
all should give the same value for the latitude or at least only
such differences as may be attributed to errors of observation

and casual errors of the refraction as mentioned in No. 13 of

the third section, provided that the adopted formula for the

refraction and especially the adopted value of the constant

of refraction is true. Hence if there are any differences,

they must enable us to correct the constants on which the

tables of refraction, which are used for the reduction, are

based.

Denoting by z and f the observed zenith distances at

the upper and lower culmination, by r and o the refraction,

we have for any north latitude the equations :

S
(f
= z =t= r

180 8
y&amp;gt;

= +
(&amp;gt;,

where south zenith distances must be taken negative and where

the upper or lower sign must be used, if the star at its upper
culmination be north or south of the zenith. From these

equations we find :

15*
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If another star be observed at both culminations and the

zenith distances and z be found, we should be able, to

find from the following two equations :

90. -,_+!+ =

and

the values of
cp

and of that constant which in o
, (/, r and

r occurs as factor. But the values thus found would be

only approximate on account of the errors of observation
;

besides equation (/) in No. 9 of the third section shows, that

the refraction is not strictly proportional to the constant r&amp;lt;

but that it contains some other constants, the correct values

of which it is desirable to determine from observations.

Ivory s formula contains besides a the constant
/&quot;,

which de

pends on the decrease of temperature with the elevation above

the surface of the earth, which however shall here be ne

glected, since its influence, which is always small, is felt only
in the immediate neighbourhood of the horizon; but besides

this, like all other formulae for the refraction, it contains the

coefficient e. for the expansion of air by heat, which it is

also best to determine in this case by astronomical observa

tions. For since the atmosphere has always a certain degree
of moisture and the expansion of the air depends on its state

of moisture, therefore if we determine this coefficient from

a large number of observed refractions, we shall obtain a

value, which corresponds to a mean state of the atmosphere,
and the refractions computed with this value will give in

the mean of a great many observations as near as possible

that value which would have been obtained, if the actual

moisture of the atmosphere at the time of each observation

had been taken into account. Now denoting the mean and

the true refraction by R and #
,
we have according to the

formula (12) of the third section:

R = R[B . T]
A

[l 4-f(r 50)]~
A

,

where A 1 H- q and /I= 1 -i-p. From this we get:

dR A(r-50)dR = . d a - --
7 R de

,da 1 -f- K (T 50)

or taking:
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a H- da a (1 ,
s -{- de = e (I + i)

r&amp;gt;7 f ^ *J\rj j..;

7** J7&amp;lt;^56)*

But according to the formula (/) in No. 9 of the third

section we have:

(I a) sins 2

The second term of the second member of this equation
becomes significant only for zenith distances greater than 80

and if we put:

80
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Now the observations of the several stars will not have

the same weight, since the accidental errors of observation

are the greater the nearer the star is to the horizon. Hence

the probable error of an observation will generally increase

with the zenith distance of the star. In case that the values

of d y, k and i were already known and were substituted in

the equations, the quantities n would be the real errors of

observation and hence the probable error of one observation

might be determined. But since these values are unknown,
this can only approximately be found from the deviations of

the single observations from their arithmetical mean. If then

w and w are the probable errors of an observation at the

upper and lower culmination, all equations of the same star

must be divided by Vw
1
-+- w ~ in order to give to the equations

o*f the several stars their true weight. In case that the prob
able errors should be found very different when the equa
tions have been solved, the whole calculation may be repeated.

Also stars culminating south of the zenith can be used

for determining the correction i of the coefficient for the

expansion of air. For such stars we have according to the

notation which we used before, taking the zenith distances

positive :

?&amp;gt;o &amp;lt;?o
-+- d (? &amp;lt;?)

= ~ -H r + r
(l-t- )

k mri,

or taking:
&amp;gt;,.

= ~ + r H- S
&amp;lt;f&amp;gt;

,

= n 4- d (8 y) -h r(l +
)
k mri. (c)

If also in this case we multiply the equations of the

several stars by their corresponding weights and deduce the

equations for the minimum from all equations of the same

star, we can eliminate the unknown quantities d (J &amp;lt;/)

and

/e, so that each star gives finally an equation of the form:

=N Mi. (d)

But a similar equation can be deduced from every cir-

cumpolar star observed at the times of both culminations, if

the equations (6) are treated in a similar way. Hence we

find a number of equations of the form (d) equal to the

number of observed stars, from which the most probable value
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of i can be deduced *). By this method Bessel determined

the quantity i and thus the coefficient of the expansion of

air for a mean state of the moisture of the atmosphere from

observations made at Koenigsberg. (Consult Bessel, Astrono-

mische Beobachtungen, Siebente Abtheihmg, pag. X) and the

value found by him is the one which was given before na

mely 0.0020243 for one degree Fahrenheit,

If we substitute the most probable value of i in the

equations (6) or rather in the equations of the minimum, de

duced for each star, we find from the combination of these

equations corresponding to the several stars, the most prob
able values of dy and A-**).

If it should be desirable, to take the correction of the

quantity f into account, it would be necessary to add to dR

the term - - df or, taking f-\-df=f(I -j-/i), the term

d R R
f h= h, where the values of x can be taken from the
df x

following table:

z
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a year and therefore may be determined from observations

made during one year. But the principal term of nutation

has a period of 18 years and 219 days, the time in which

the moon s nodes perform an entire revolution. Hence the

constant of nutation can be determined only by observations

distribued over a long series of years.

Since the apparent right ascensions of the pole-star are

very much changed by aberration and nutation on account

of the large factors sec d and tang t)
,
their observations afford

the best means for determining these constants; for the same

reason the parallax of the pole-star can be determined in this

way with great advantage. Putting:

cos cos a= a sin A
sin a= a cos -4,

the formulae for aberration- and parallax in right ascension

in No. 16 and 18 of the third section, can be thus written:

a a= -t- ka sin (0 -+- A) sec S -+- n a cos (0 -t- A) sec -h
&amp;lt;p

(fc
2
),

where k and n are the constant of aberration and the parallax

and
&amp;lt;/ (/e

2
) denotes the terms of the second order. If scvcnil

observations are taken at the times when sin (0 -+- A)= =t= 1

and hence the maximum of aberration occurs, an approxi
mate value of k can be found by comparing the right ascen

sions observed at both times after reducing them to the same

mean equinox. But in order to obtain a more accurate value,

the most probable value must be determined from a great

many observations. Now the mean right ascension a and

the assumed value of the constant k be erroneous by /\a and

A&, the true values being -f-A and &H-A&. If then

denotes that value of the apparent right ascension, which

has been computed from c&amp;lt; with the value k of the constant

of aberration (the computed precession and nutation being

supposed to be the true values) and to which the small terms

dependent on the square of k and on the product of aber

ration and nutation have also been added, since the effect

of a change of k upon them is very small, and if further a

denotes the observed apparent right ascension, we have:

a = -f- AH- A&sin (0 -+ A) sec S -+- n a cos (0 -+- A) sec d,

hence, taking:
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every observation of the right ascension of Polaris leads to

an equation of the following form:

= -f- -f- A k . a sin (0 -f- A) sec 4- TT cos (0 -h 4) sec tf,

and from all these equations the most probable values of A?
A/ and TT can be determined according to the method of

least squares.

Should these observations embrace a long period of years,

the constant of nutation, that is, the coefficient of cos &amp;lt;H in

the expression for the nutation of the obliquity can be deter

mined at the same time. If we denote by i\v the correction

of this coefficient, we must add to the above equation the

term -- - A r, where the expression for
,

has been given in

No. 6 of the second section. The complete equation for de

termining the aberration, parallax and nutation from the ob

servation of an apparent right ascension is therefore:

= n -+- A-f- A& sin (0H-4) sec d+na cos (0-K4) sec -{-

(
&quot;&quot;

A* .

If for this purpose the observations made at different

observatories are used, the probable errors of the observations

of the several observers must be determined and the cor

responding weight be given to the different equations. In

this case also the correction A** may not be the same for

the observations of the several observatories, as the observed

right ascensions may have a constant difference. Hence this

difference must be determined and be applied to the obser

vations or the unknown quantities A, A etc. must be elim

inated separately by the observations of each observatory.
In this way von Lindenau determined the following va

lues of the constants from right ascensions of Polaris ob

served by Bradley, Maskelyne, Pond, Bessel and himself in

the course of 60 years :

k= 20&quot;. 448C v= 8&quot;. 97707 TT = 0&quot;. 1444,

Peters found later from observations made by Struve

andPreuss at Dorpat during the years 1822 to 1838 the fol

lowing values:

k ==
20&quot;. 4255 v= 9&quot;. 236 1 TT= 0&quot;. 1724.

For the determination of these constants by declina

tions those of Polaris are also very suitable, as their accuracy
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can be greatly increased by taking several zenith distances

at every culmination of the star. If we introduce in this

case the following auxiliary quantities:

sin a sin 8 cos e cos S sin e. = l&amp;gt; sin B
cos sin S= b cos B,

the aberration in declination is equal to &6 sin (O -|- #), the

parallax equal to 71 b cos (O-h#). Then denoting by f) that

value of the apparent declination which has been computed
from the mean declination with the constants of aberration

and nutation k and v (the computed precession being taken

as accurate) and to which the small terms dependent on the

square of k and on the product of aberration and nutation

have also been added
;
further denoting the observed apparent

declination by &amp;lt;) and taking # d = n, every observation of

a declination leads to an equation of the following form:
7 J5

1

= n -+- A S -f- &kb sin (0+ 7?) -\- n b cos (Q H- B} H- A&quot;,

&amp;lt;lr

and in case that the observations embrace a sufficiently long

period, the most probable values of /^o, A#, 71 and &v can

be determined according to the method of least squares *).

It was by such observations that Bradley discovered the aber

ration. He observed at Kew since the year 1725 principally
the star

;&amp;gt;

Draconis besides 22 other stars, .passing nearly

through the zenith of the place, and discovered a periodical

change of the zenith distance, which could not be explained
as being the effect of parallax, for the determination of which

these observations were really intended. The true explanation
of this change as the effect of the motion of the earth com
bined with that of light was not given by him until later.

The instrument, which he used for these observations, was

a zenith sector, that is, a sector of very large radius, with

which he could observe the zenith distances of stars a little

over 12 degrees on each side of the zenith. The star y Dra

conis, being near the north pole of the ecliptic, was espe

cially suitable for determining the parallax and thus also the

*) If the stars have also proper motions, the terms p(tt ) and y(t O
must be added to the equations for right ascensions and declinations, where

p and q are the proper motions in right ascension and declination.
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aberration, as for this pole we have a = 270, d= 90
,

hence 6=1 and 5=90 and the maximum and minimum
of the aberration and parallax in declination are equal to == k

and =t= 7i.

By similar observations he discovered also the nutation.

The observations embrace the time from the 19th of August
1727 to the 3 d of September 1747, hence an entire period of

the nutation. Busch found from their discussion the constant

of aberration equal to 20&quot;. 23. Lundahl found the following
values from the declinations of Polaris observed at Dorpat by
Struve and Preuss:

/,-= 20&quot;. 5508 r= 9&quot;. 21 04 n = 0&quot;. 1473.

The value of the constant of nutation given in No. 5 of

the second section is taken from Peters s pamphlet ^Numerus
Constans Nutationis&quot;. It was derived from the three deter

minations made by Peters, Busch and Lundahl, the probable
errors of the single results being taken into account.

But the value of the constant of aberration given in No. 16o
of the third section has not been deduced from the values

given above, but has been determined by Struve from the

transits of stars across the prime vertical. For if an instru

ment is placed exactly in the plane of the prime vertical arid

a star is observed on the wire on the east and west side*),
the interval of time divided by 2 is equal to the hour angle
of the star at the transit across the prime vertical. If we de

note this by ,
we get from the right angled triangle between

the zenith, the pole and the star:

tang = tang y cos *,

hence we see that the declinations of the stars can be de

termined by such observations. Differentiating the formula
in a logarithmic form, we find:

dd .

sin 2

and thus we see that an error in t has the less influence the

smaller t is or the nearer to the zenith the star passes across
the prime vertical. Hence if the zenith distance is very small,
the declination of such a star can be determined by this

*) See No. 26 of the seventh section.
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method very accurately. The equations for each star are

in this case quite similar to those given before and it is

again preferable to select for these observations stars near

the pole of the ecliptic. By this method Struve found the

constant of aberration equal to 20&quot;. 445 J, a value which un

doubtedly is very exact. But his observations embrace too

short a period for determining the constant of nutation, which

however as well as the parallax might also be found by this

method with a great degree of accuracy.

The constant of aberration may also be computed from

the velocity of light and that of the earth according to No. 16

of the third section. The mean daily motion of the earth

has been determined with great accuracy and is equal to

59 8&quot;. 193. The time in which the light moves through a

distance equal to the semi-diameter of the earth s orbit, was

first determined by Olav Koemer from the eclipses of the

satellites of Jupiter. For he found in the year 1675, that

those eclipses which took place about opposition were ob

served 8 13 s earlier and those about conjunction as much

later than an average occurrence *). Now as the difference

of the distances of Jupiter from the earth at both times is

equal to the diameter of the earth s orbit, Rorner soon found

the true explanation, that the light does not move with an

infinite velocity and traverses the diameter of the earth s

orbit in 16 111 26 s
. If therefore T be the time of the begin

ning or the end of an eclipse computed from the tables, then

must be added to it in order to render it conformable to

the observations, the term

4- A A

where K is the number of seconds, in which the light tra

verses the semi -diameter of the earth s orbit and A is the

distance of the satellite from the earth, the semi -major axis

of the earth s orbit being taken as the unit. If then 2 is

the time of the eclipse thus corrected, T the observed time,

every eclipse gives an equation of the form:

*) At the opposition the earth stands between Jupiter and the sun, whilst

at conjunction the sun it between Jupiter and the earth.
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and from a large number of such equations the most prob
able value of dK can be determined. However the observa

tions of the beginning and the end of an eclipse are always
a little uncertain, since the satellites lose their light only

gradually and as thus the errors of observation greatly de

pend upon the quality of the telescope, it is best, to com

bine only such observations which have been made with

the same instrument and also to treat the observations of

the beginning and of the end separately. Delambre found

by a careful discussion of a large number of observed eclipses

the constant of aberration equal to 20&quot;. 255, a value which

according to Struve s determination is too small.

12. The annual parallax of a star can be determined

still by another method, if the change of the place of the

star relatively to that of another star, which has no parallax,

be observed. This method is even preferable to the former,

because the relative places of two stars near each other can

be measured with great accuracy by means of a micrometer

(as will be shown in the seventh section) and because the

effect of the small corrections upon the places of both stars

is so nearly equal, that any errors in the adopted values of

the constants can have no influence on the difference of the

mean places *). It is true, this method gives strictly only
the difference of the parallaxes of both stars. But since is

may be taken for granted, that very faint stars are at a great

distance, the parallaxes thus found, when one or several such

faint stars have been chosen as comparison stars, can be

considered as nearly correct.

If the difference of right ascension and declination of

both stars has been observed, each observation freed from

the small corrections gives two equations of the following

form, taking the differences at the time tn equal to

and &amp;lt;yo cV and denoting a
() ( ) and &amp;lt;) r)

*) In this case, when the stars are near each other, it is preferable, not

to compute the mean place of each star, but to free only the difference of

the apparent places from refraction, aberration, precession and nutation. The
formulae necessary for this purpose will be given in VIII and IX of the

seventh section.
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(&amp;lt;$ d) by n and w and the errors of the adopted place by
A and &:

H-tfa cos lQ 4- 4) sec

Usually however instead of the difference of the right

ascensions and declinations of both stars their distance is

observed and besides the angle of position, that is, the angle
which the declination circle of one star makes with the great
circle passing through both stars. If then a and 8 be the

true right ascension and declination of one star, and &amp;lt;5

their values not freed from parallax, a&quot; and 8&quot; the right as

cension and declination of the comparison star, we find the

changes of the differences of the right ascensions and decli

nations produced by parallax as follows:

d
(&quot; )

= a = TT R [cos Q sin a sin cos E cos a] sec

d
(&quot; 8) S 8 = TT R [cos e sin a sin sin e cos S] sin

-h 7t R sin S cos a cos 0.

If then the true distance and the true angle of position

be denoted by A and P, we have:

A sin P= cos S
(&quot; )

AcosP=&amp;lt;T S

hence:

dA= sin P cos 8d(a&quot; a) + cos P &amp;lt;/

(S&quot; 5)

A rfP= cos Pcosdd
(a&quot; a^ smPd

(S&quot; S).

If we substitute here the expressions given before and

take :

? cos M= sin a sin P -f- sin S cos a cos P,

w* sin M=
[ cos sin P -f- sin $ sin cos P] cos f cos S cos P sin e,

m cos j\I= [sin a cos P sin S cos a sin P] ,

A

w sin 3/ = [ (cos a cos P-f- sin S sin a sin P) cos e -+- cos # sin P sin f],
A

we easily find:

d A = n R m cos (0 M)
dP= 7tR m cos (0 J/ ).

Therefore if
&amp;lt;/A

denotes the correction of the adopted
distance at the time f

, d(/ the correction of the adopted
value of the proper motion in the direction towards the other

star, we find from the observed distances equations of the

form :

= v+ &amp;lt;/Ao -H (t &amp;lt;o) d? -+-7tRm cos (0 M) .
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and from the angles of position equations of the form:

= -f- dP 4- (t O dq -i-TiR m cos (0 M } ,

which must be solved according to the method of least squares.

By this method Bessel first determined the parallax of 61

Cygni.

C. Determination of the constant of precession and of the proper motions

of the .stars.

13. We find the change of the right ascension and de

clination of a star by the precession during the interval t
,

if we compute the annual variations:

da dl, da dl. ~= in -f- n tg
1 o sin a = cos c - - --

f- sm E tg o sin a

d dl
T-= n cos a = sm e cos

for the time and then multiply them by t t. Now

since the numerical value of
a

is known from the theory of

the secular perturbations of the planets, we may determine

the lunisolar precession
(

either from the right ascensions

or from the declinations, comparing the difference of the values

found by observations at the time t and t with the above

formula. Then if the places of the stars were fixed we should

find nearly the same value of the precession from different

stars and the more exactly, the greater the interval is between

the observations, as any errors of observation would have

the less influence. But since not only different stars but also

the right ascensions and declinations of the same star give
different values for the constant of precession, we must at

tribute these differences to proper motions of the stars. As

they are like the precession proportional to the time, they
cannot be separated from it and the difficulty is still increased

by the fact, that the proper motions, partly at least, follow

a certain law depending on the places of the stars. Hence
we can eliminate the proper motions only by comparing a

large number of stars distributed over all parts of the heavens

and excluding all those, which on account of their large

proper motion give a very different value for the precession.
The large number will compensate any errors of observation
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entirely and the effect of the proper motions as much as

possible. As the proper motions are proportional to the time,

the uncertainty of the value of the precession arising from

them remains the same, however great the interval between

the two compared catalogues of stars may be, but it will be

most important, that the catalogues are very correct and con

tain a large number of stars in common and that the inter

val is long enough so as to make any uncertainty arising
from errors of observation sufficiently small. If then m

()
and

MO are the two values of m and n employed in comparing
the two catalogues, if further

,
c) and a and &amp;lt;) are the mean

places of a star for the times t and t\ given in the two cat

alogues, and A and /\d the constant differences of the cat

alogues for ct and r) and if we take:

a -+- O 4- w
() tg &amp;lt;? sin ) (t /) a = v (t

and

every star gives two equations of the form:

-f- dm -+- dn tg sin ,

t t

and

Q= v,,

t t

Therefore if we consider the proper motions embraced

in v and v like casual errors of observation, we may find

the most probable values of the unknown quantities from a

large number of equations by the method of least squares.

This supposition would be justified, if the proper motions

were not following a law depending on the places of the

stars. But as it is very difficult, if not impossible, to introduce

in the above equations a term expressing this law, a matter

which shall be more fully considered afterwards, hardly any

thing better can be substituted in place of that supposition,

provided that a large number of stars distributed over all

parts of the heavens be used. We then get from the right

ascensions a determination of m and n, from the declina

tions a determination of n
;
but it is evident, that an error of

the absolute right ascensions, which is constant for every
. , T ,i 7 i dm dl, da

catalogue, remains united with dm and as ^ =cos -
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there remains also in it any error of the value of ---
arising

from incorrect values of the masses of the planets. But the

determination of dn dl
(
sin from the right ascensions is

independent of any such constant error, and besides the con

stant difference of the declination may be determined. But

since the supposition, that the latter is constant for all decli

nations
,

is not allowable
,

it is better to divide the stars in

zones of several degrees for instance of 10 of declination

and to solve the equations for the stars of each zone sep

arately, and hence to determine the mean difference /\J for

each zone. In this way Bessel in his work Fundamenta Astro-

nomiae determined the value of this constant from more than

2000 stars, whose places had been deduced for 1755 and

1800 from Bradley s and Piazzi s observations. He found for

1750 the value 50&quot;. 340499, which he afterwards changed

according to the observations made at Koenigsberg into

50&quot;. 37572. (Compare Astron. Nachr. No. 92.)

14. The differences of the places of the stars observed

at two different epochs and the precession in the same in

terval of time, which has been computed with the value of

the constant determined as before, are then taken as the proper
motions of the stars. In general they may be accounted for

within the limits of possible errors of observation by the sup

position, that the single stars are moving on a great circle

with uniform velocity. Halley first discovered in the year
1713 the proper motion of the stars Sirius, Aldebaran and

Arcturus*). Since then the proper motions of a great many
stars have been recognized with certainty and it is inferred,

that all stars are subject to such, although for most stars

these motions have not yet been determined, since they are

small and are still confounded with errors of observation. The

greatest proper motions have 61 Cygni (whose annual change
in right ascension and declination amounts to 5&quot;. 1 and 3&quot;. 2),

a Centauri (whose annual motion in the direction of the two

*) The last mentioned star has a proper motion of 2&quot; in declination

and has therefore changed its place since the time of Hipparchus more than

one degree.

16
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co-ordinates is 7&quot;.0 and 0&quot;. 8) and 1830 Groombridge (which
moves 5&quot;. 2 in right ascension and 5&quot;. 7 in declination).

The elder Herschel first discovered a law in the direction

of the proper motions of the stars, when comparing, a great

many of them he observed, that in general the stars move
from a point in the neighbourhood of the star A Herculis.

Hence v he suggested the hypothesis that the proper motions

of the stars are partly at least only apparent and caused by
a motion of the entire solar system towards that point of the

heavens
,

a hypothesis ,
which is well confirmed by later in

vestigations on this subject. The proper motions of the fixed

stars are therefore the result of two motions, first of the mo
tion peculiar to each star, by which they really change their

place according to a law hitherto unknown, and secondly of

the apparent or parallactic motion which is the effect of the

motion of the solar system. Now on account of the motion

peculiar to each star, stars in the same region of the celestial

sphere may change their places in any direction whatever,

but the direction of the parallactic motion is at once de

termined by the place of the star relatively to that towards

which the solar system is moving, and can be easily calcu

lated, if the right ascension and declination A and D of that

point are known. If we compare the direction, computed
for any star, with the direction, which is really observed, we
can etablish for each star the equation between the difference

of the computed and the observed direction and changes of the

right ascension and declination A and D; and since those

portions of these differences, which are caused by the pecu
liar motions of the stars, follow no law and can therefore

be treated like casual errors of observation, we can find from

a large number of such equations the most probable values

of dA and dD by the method of least squares.

It is evident that the direction of the .parallactic portion

of the proper motion of a star coincides with the great circle,

drawn through the star and the point towards which the

solar system is moving, because the star, supposing of course

that the sun is moving in a straight line, is always seen in

the plane parsing through it and the straight line described

by the sun. Now if we denote the motion of the sun during
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the time t t divided by the distance of the star by a, and

then denote the right ascension and declination of the star

at the two epochs t and t by ,
8 and

,
d

,
and finally

the ratio of the distances of the star from the sun at the

same epochs by Q, we have the following equations:

Q cos 8 cos a = cos S cos ft a cos A cos D
()
cos S

1

sin a = cos S sin a sin A cos D
(&amp;gt;

sin S = sin S a sin Z),

from which we easily deduce:

cos S = cos S a cos D cos ( ^4),

therefore :

cos S (a a) = a cos D sin ( ^1)

$ 3= a [cos $sin /&amp;gt; sin $cos /) cos ( yl)].

But we have also in the spherical triangle between the

pole of the equator, the star and the point, whose right ascen

sion and declination are A and P, denoting the distance of

the star from that point by A and the angle at the star by P:

sin A sin P= cos D sin ( A)
sin A cos P= sin Z&amp;gt; cos $ cos /&amp;gt; sin S cos ( A).

Now if we denote the angle, which the direction of the

proper motion of the star makes with the declination circle,

by /?, we have:

cos S (a a)

hence we see, that p = 1 80 P or that the star is moving
on a great circle passing through it and the point whose

right ascension and declination is A and D, so that it is mov

ing from the latter point.

From the third of the differential formulae (11) in No. 9

of the introduction, we have:

sin A
cos/

sin A
hence :

H . [sin S cos D cos S sin D cos (a A)} dA.
sin A

-
sin A

-
. 2 [sin 8 cos D cos S sin D cos (a A)] dA.
cosD

sin A 5

Therefore if p be the observed angle, which the direction

of the proper motion makes with the declination circle, reck-

16*
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oned from the north part of it through east from to 360

so that:

cos 8 ( a)

and if further p be the value of. \ 80 P computed accord

ing to the formulae (#) with the approximate values A and

D, we have for each star an equation of the form:

( A)

--
[sin cosD cos sin D cos (a A)] dA,

or:

cos 8 sin (a A) .dD
sin A

[sin &amp;lt;?cos D cos 8 sin D cos ( A}} dA,
sin A

and from a large number of such equations the most prob
able values of dA and dD can be deduced.

In this way Argelander determined the direction of the

motion of the solar system *). Bessel in his work ^Funda-
menta Astronomiae&quot; had already derived the proper motions

of a large number of stars by comparing Bradley s observa

tions with those of Piazzi. Argelander selected from those

all stars, which in the interval of 45 years from 1755 and

1800 exhibited a proper motion greater than 5&quot; and deter

mined their proper motions more accurately by comparing

Bradley s observations with his own made at the observatory
at Abo**). For determining the direction of the motion of

the solar system he used then 390 stars, whose annual pro

per motion amounted to more than 0&quot; . 1 . These were divi

ded into three classes according to the magnitude of the pro

per motions and the corrections dA and dD determined sep

arately from each class. From those three results
,
which

well agreed with each other, he finally deduced the follow

ing values of A and D, referred to the equator and the equi

nox of 1800:

-4= 259 51 . 8 and D = -+ 32 29 . 1
,

*) Compare Astronom. Nachrichten No. 363.

**) Argelander, DLX stellarum fixarum positiones mediae ineunte anno

1830. Helsingforsiae 1835.
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and these agree well with the values adopted by Herschel.

Lundahl determined the position of this point from 147 other

stars, by comparing Bradley s places with Pond s Catalogue
of 1112 stars and found:

4= 252 24 . 4 and D 4- 14 26 . 1.

From the mean of both determinations, taking into ac

count their probable errors, Argelander found:

.4 = 257 59 . 7 and D= + 28 49 . 7.

Similar investigations were made by O. v. Struve and

more recently by Galloway. Struve comparing 400 stars

which had been observed at Dorpat with Bradley s catalogue,
found :

4= 261 23 and D= -f-37 36 .

Galloway used for his investigations the southern stars,

and comparing the observations made by Johnson on St.

Helena and by Henderson at the Cape of Good Hope with

those of Lacaille, found:

A = 260 1 and D = 4- 34 23 .

Another extensive investigation was made by Madler,
who found from a very large number of stars:

4= 261 38 . 8 and D= + 39 53 . 9

Since all these values agree well with each other, it seems

that the point towards which the solar system is moving, is

now known with great accuracy, at least as far as it is attain

able considering the difficulties of the problem.

15. We may therefore assume, that the direction of the

parallactic proper motion of a star, computed by means of

the formula:

cos D sin (a 4)
sin D cos 8 cos D sin $ cos (a 4)

with a mean value of A and
/&amp;gt;,

is nearly correct. If now,

besides, the amount of this portion of the proper motion were

known for every star, we should be able to compute for

every star the annual change of the right ascension and de

clination, caused by this parallactic motion, and could add

this to the equations given in No. 13 for determining the

constant of precession. The amount of this parallactic mo
tion must necessarily depend on the distance of the star,

hence if the latter were known, we could determine the par-
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allactic motion corresponding to a certain distance. For

since those equations are transformed into the following:

= v -h dm H- dn tg 8 sin -h ~ - sin ( A)
l\ COS 0Q

and O^^ -f-dn,, cos -h -# sin ( Z) )

where S = g cos Cr
,

sin $ cos ( A)= g sin G,

we could find, if A were known, from these equations A;,

that is, the motion of the sun as seen from a distance equal

to the adopted unit and expressed in seconds, and besides

we should find the values of dm and dn
t)

free from this

parallactic proper motion of the stars. Now since the dis

tances of the stars are unknown, O. v. Struve substituted

for A hypothetical values of the mean distances of the dif

ferent classes of stars, which had been deduced by W. v.

Struve in his work, Etudes de FAstronomie stellaire from the

number of stars in the several classes *). Struve then com

pared 400 stars which had been observed by W. v. Struve

and Preuss at Dorpat with Bradley s observations and, at first

neglecting the motion of the solar system, he found for the

corrections of the constant of precession from the right as

censions and declinations two contradicting results, one being

positive, the other negative. But taking the proper motion

of the sun into account he found the corrections -f-l&quot;.16

from the right ascensions and 4-0&quot;. 66 from the declinations

and hence, taking into account their probable errors, he found

the value of the constant of precession for 1790 equal to

50&quot;. 23449 or greater than Bessel had found it by 0.01343.

Further he found for the motion of the sun, as seen from a

point at the distance of the stars of the first magnitude,
0&quot;.321 from the right ascensions and 0&quot;.357 from the decli

nations. But although these values of the constant of pre

cession and of the motion of the solar system are apparently
of great weight, it must not be overlooked, that they are

based on the hypothetical ratio of the distances of stars of

*) According to this, the distance of a star of the first magnitude being

1, that of the stars of the second magnitude is 1.71, that of the third 2.57,

the fourth 3.76, the fifth 5.44, the sixth 7.86 and the seventh 11.34.
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different magnitudes. Besides it cannot be entirely approved

of, that the number of stars used for this determination,

which are nearly all double stars, is so very small.

If it should be desirable for a more correct determina

tion of the constant of precession, to take the motion of the

solar system into account, it may be better, not to introduce

the ratios of the distances of stars of different magnitude

according to any adopted hypothesis, but rather to divide

the stars into classes according to their magnitude or their

proper motions, and to determine for each class a value of

and the correction of the constant of precession. The

values of thus found can be considered as mean values
a

for these different classes and the values of m and n will

then be independent at least of a portion of the parallactic

motion, which will be the greater, the more nearly equal the

distances of the stars of the same class are *). Even the

corrections of A and D might be found in this way, since the

equations in this case would be, taking = a :

= ^-4- dm n -+- dn tang d sin ~ cos ( A) adA
cos o

-f- [cos D - sin DdD]

= v -i-dn cos g cos (G D) adD -+- cos D sin$ sin ( A) adA

-hagsm(G-D)
from which the most probable values of a, ad A, adD,
dm

(t
and dn

()
can be determined for each class. In case,

that Struve s ratio of the distances be adopted, the un

known quantity a after multiplying the factor by would

*) The author has undertaken this investigation already many years ago

without being able to finish it. The proper motions were deduced from a

comparison of Henderson s observations made at Edinborough with those of

Bradley. The following mean values were found for the annual parallactic

motions of stars of several classes:

for 32 stars of magnitude 4.3. 0&quot;.06S9S5 =t= 0.010964

75 4. 0&quot;.069715=t= 0.006584

71 4.5. 0&quot;.046Sll=t= 0.006925

284 5. 0&quot;.029043 0.002446.

Stars, whose annual proper motion exceeds 0&quot;.3 of arc, were excluded in

making this investigation.
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be the same for all classes. (Compare on this subject also

Airy s pamphlet in the Memoirs of the Royal Astronomical

Society Vol. XXVIII.)

16. At present we always assume that the proper mo
tions of the stars are proportional to the time and take place
on a fixed great circle. But the proper motions in right as

cension and declination are variable on account of the change
of the fundamental plane to which they are referred, and it

is necessary to take this into account, at least for stars very
near the pole.

The formulae, which express the polar co-ordinates re

ferred to the equinox at the time t by means of the co

ordinates referred to another equinox at the time
,
are ac

cording to No. 3 of the second section:

cos sin ( -j- a 2 )
= cos S sin (a -f- a -+- z)

cos S cos ( -f- a z )
= cos S cos (a -+- a +- z) cos sin S sin

sin 8 = cos S cos ( -f- a -f- z) sin -+- sin S cos 0,

where a denotes the precession produced by the planets dur

ing the time t
,
and 3, z and are auxiliary quantities

obtained by means of the formulae (yl) of the same No.

Since the proper motions are so small, that their squares and

products may be neglected, we obtain by the first and third

formulae (11) in No. 9 of the introduction, remembering that

the formulae above are derived from a triangle the sides of

which are 90 #
,
90 8 and S and the angles of which

are a -f- a -+- z, 1 80 a a -t- z and c :

A S = cos c & sin sin ( 4- a z) A
cos $ A = sin c &d -+- cos S cos c

A&amp;lt;*

or if sin c and cos c be expressed in terms of the other parts

of the triangle:

fa = A [cos -h sin tang S cos ( -ha 2 )] + - sin
S1D^-~t a ~ z&amp;gt;}

cos o cos o

(a)

A&amp;lt;9
= A sin sin ( + a z ) -h -. cos S [cos + sin tang S cos ( + a )]

cos o

and in the same manner:

A =A [cos sin tang 8 cos (a H- a 4- z)} s&amp;gt;

sin
cos a cos o

(6)

A0=A sin (9 sin (a -f- a -|-z) H ^.cosS [cos si
coso
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Example. The mean right ascension and declination of

Polaris for the beginning of the year 1755 is:

a= 10 55 44&quot;. 955 8= 4- 87 59 41&quot; *12.

By application of the precession the place of Polaris

was computed in No. 3 of the second section for 1850 Jan. 1,

and found to be:

=16 12 56&quot;. 9 17 S = -4-88 30 34&quot;. 680.

But in Bessel s Tabulae Regiomontanae this place is:

= 16 15 19&quot;. 530 8 = 4-88 30 34&quot;. 898.

The difference between these two values of and S

arises from the proper motion of Polaris, which thus amounts

to -{- 2 22&quot;. 613 in right ascension and to 4-0&quot;. 218 in de

clination in the interval from 1755 to 1850. The annual

proper motion of Polaris referred to the equator of 1850 is

therefore :

A = 4-1&quot;. 501 189 A &amp;lt;?
= 4-0&quot;. 002295.

If we wish to find from this, for example, the proper mo
tion of Polaris referred to the equator of 1755, it must be

computed by means of the formulae (6). But we have:

= 31 45&quot;. 600

a-\-a + z=ll 32 9&quot;. 530

and with this we obtain :

A = 4- 1&quot;. 10836 A&amp;lt;?
= -hO&quot;. 005063.

In the case of a few stars the assumption of an uniform

proper motion does not satisfy the observations made at

different epochs, since there would remain greater errors,

than can be attributed to errors of observation. Bessel first

discovered this variability of the proper motions in the case

of Sirius and Procyon, comparing their places with those of

stars in their neighbourhood, and he accounted for it by the

attraction of large but invisible bodies of great masses in

the neighbourhood of those stars. Basing his investigations
on this hypothesis, Peters at Altona has determined by means
of the right ascensions of Sirius its orbit round such a cen

tral body and has deduced the following formula, which ex

presses the correction to be applied to the right ascension

of this star:

q= Os . 127 4- . 00050 (t 1800) 4- 0* . 171 sin (M 4- 77 44 ) ,
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where the angle u is found by means of the equation:
M 7 . 1865 (* 1791 . 431) = u . 7994 sin u

and where 7. 1865 is the mean motion of Sirius round the

central body. By the application of the correction computed

according to this formula the observed right ascensions of

Sirius agree well with each other. Safford at Cambridge
has recently shown, that the declinations of Sirius exhibit

the same periodical change, and that the following correction

must be applied to the observed declination:

,?
=

-f-0&quot;.56-hO&quot;.0202(* 1 800) -r- 1&quot;. 47 sin w 4-0&quot;. 51 cos M,

where u is the same as in the formula above *).

*) Of great interest in regard to this matter is the discovery, made re

cently by A. Clarke of Boston, of a faint companion of Sirius at a distance

of about 8 seconds.



FIFTH SECTION.

DETERMINATION OF THE POSITION OF THE FIXED GREAT
CIRCLES OF THE CELESTIAL SPHERE WITH RESPECT TO

THE HORIZON OF A PLACE.

It has been already shown in No. 5 and 6 of the prece

ding section, how the position of the fixed great circles of

the celestial sphere can be determined by means of a merid

ian instrument. For if the instrument has been adjusted
so that the line of collimation describes a vertical circle, it

is brought in the plane of the meridian
(i. e. the vertical circle

of the pole of the equator is determined) by observing the

circumpolar stars above and below the pole, since the in

terval between the observations must be equal to 12 h of sidereal

time -f- A 9
where A is the variation of the apparent place

in the interval of time. Further the observation of the zenith

distances of a star at both culminations gives the co-latitude,

since this is equal to the arithmetical mean of the two zenith

distances corrected for refraction -h| A^, where A^ is the varia

tion of the apparent declination during the interval between

the observations. If the culmination of a star, whose right

ascension is known, be observed, the apparent right ascension

of the star is equal to the hour angle of the vernal equinox
or to the sidereal time at that moment. If a similar obser

vation is made at another place at the same instant, the dif

ference of both times is equal to the difference of the hour

angles of the vernal equinox at both places or to their dif

ference of longitude, and it remains only to be shown, by
what means the determinations of the time at both places
are made simultaneously or by which at least the difference

of the time of observation at both places becomes known.
These methods, which are the most accurate as well as

the most simple, are used, when the observer can employ a firmly



252

mounted meridian instrument. But the position of the zenith

with respect to the pole and the vernal equinox may also

be determined by observing the co-ordinates of stars, whose

places are known, with respect to the horizon, and thus va

rious methods have been invented, by which travellers or

seamen can make these determinations with more or less ad

vantage according to circumstances and which may be used

on all occasions, when the means necessary for employing the

methods given before are not at hand.

We have the following formulae expressing the relations

between the altitude and azimuth of a star, its right ascen

sion and declination and the sidereal time and the latitude :

sin h= sin
&amp;lt;p

sin 8 -+- cos
&amp;lt;f

cos S cos (0 a)

cos a&amp;gt; tang S
cotangvl = ~-

-t- sin d cote (0 a),
sm (0 )

These equations show, that if the latitude is known, the

time may be determined by the observation of an altitude or

azimuth of a star, whose right ascension and declination are

known, and conversely the latitude can be determined, if the

time is known, therefore by the observations of two altitudes

or azimuths both the latitude and the time can be determined.

The observations used for this purpose must be freed

from refraction and diurnal parallax (if the observed object
is not a fixed star) and the places of the stars must be

apparent places. The instruments used for these observa

tions are altitude and azimuth instruments, which must be

corrected so that the line of collimation, when the telescope

is turned round the axis, describes a vertical circle (see
No. 12 of the seventh section), or, if only altitudes are taken,

reflecting circles are used, by which the angle between the star

and its image reflected from an artificial horizon, one half of

which is equal to the altitude, can be measured. When an alti

tude and azimuth instrument is used, the zenith point of the circle

is determined by means of an artificial horizon, or the star is

observed first in one position of the instrument, and again

after it has been turned 180 round its vertical axis. For

if and f are the circle -readings in those two positions,

corresponding to the times & and /, and if -r^ and - -

a
are
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the differential coefficients of the zenith distance (I, 25) cor

responding to the time =
, assuming that in the first

position the divisions increase in the direction of zenith dis

tance and denoting the zenith point by Z, then the circle-

readings reduced to the arithmetical mean of both times are:

* + Z= $ + - (0 - 0) - 1 \ (0- &,)
&amp;gt;

.

Hence the zenith distance z
(} corresponding to the arith

metical mean of the times is:

Finally in case that the object is observed direct arid

reflected from an artificial horizon, we have, since the first

member of the second equation is then 180&quot; a -r-Z:

90-* =
J (5 )H-I j^

z

a
- 9

-6&amp;gt;)

2
*).

In order to observe the azimuth by such an instrument,
the reading of the circle corresponding to the meridian or

the zero of the azimuth must be determined, and this be sub

tracted from or added to all circle -readings, if the divisionsG
increase or decrease in the direction of the azimuth.

I. METHODS OF FINDING THE ZERO OF THE AZIMUTH AND THE
TRUE BEARING OF AN OBJECT.

1. The simplest method of finding the zero of the azi

muth consists in observing the time, when a star arrives at

its greatest altitude above the horizon, and for this purpose
one observes the sun with an altitude and azimuth instrument,

*) It is supposed here, that exactly the same point of the circle cor

responds to the zenith in both positions. For the sake of examining this, a

spirit level is fastened to the circle, whose bubble changes its position, as soon
as any fixed line of the circle changes its position with respect to the vertical

line. Such a level indicates therefore any change of the zenith point and
affords at the same time a means for measuring it. (See No. 13 of the se

venth section.)
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and assumes that the sun is on the meridian as soon as it

ceases to change its altitude. This method is used at sea

to find approximately the moment of apparent noon, but ne

cessarily it is very uncertain, because the altitude of the sun,

being at its maximum, changes very slowly.

Another method is that of observing the greatest dis

tance of the circumpolar stars from the meridian. According
to No. 27 of the first section we have for the hour angle of

the star at that time:

tang (f sm(d
&amp;lt;p)

cos t
-

J or tang ^ t
2 = -.^-r ^ &amp;gt;

tang o sm (o -+- cp)

and the motion of the star is then vertical to the horizon,

since the vertical circle is tangent to the parallel circle.

Therefore if one observes such a star with an azimuth in

strument, whose line of collimatiou describes a vertical circle,

the telescope must in general be moved in a horizontal as

well as a vertical direction in order to keep the star on the

wire-cross, and only at the time of the greatest distance the

vertical motion alone will be sufficient. If the reading of

the azimuth circle is a in this position of the instrument and

a
,
when the same observation is made on the other side of the

meridian, ^~- is the reading of the circle corresponding to

the zero of the azimuth. It is best to use the pole-star for

these observations on account of its slow motion.

A third method for determining the zero of the azimuth is that

of taking corresponding altitudes. For as equal hour angles

on both sides of the meridian belong to equal altitudes, it fol

lows, that if a star has been observed at two different times

at the same altitude, then two vertical circles equally distant

from the meridian are determined by this. Therefore if we

observe a star at the wire -cross of an azimuth instrument,

read the circle and then wait, until the star after the cul

mination is seen again at the wire-cross, then if the altitude

of the telescope has not been changed but merely its azimuth,

the arithmetical mean of the two readings of the circle is

the zero of the azimuth. If the sun, whose declination changes
in the time between the two observations, is observed, a cor

rection must be applied to the arithmetical mean of the two

readings. For, differentiating the equation:
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sin 8= sin
90

sin h cos
cp cos h cos A,

taking only A and 8 as variable, we have:

_ cos dS dS
cos

(p cos h sin -4 cos
9? sin

Therefore if A^ denotes the change of the declination

in the time between the two observations, we must subtract

from the arithmetical mean of the two readings:

2 cos
(p cos h sin A 2 cos

&amp;lt;f&amp;gt;

sin t

if the divisions increase in the direction of the azimuth.

The fourth method is identical with that given in No. 5

of the fourth section for adjusting a meridian circle. For if

we observe the times at which a circumpolar star arrives at the

same azimuth above and below the pole, the plane of the

telescope coincides with the meridian, if the interval between

the observations is 12h of sidereal time -f-A, where A is the

change of the apparent place in the interval of the two times.

But if this is not the case, the azimuth of the telescope is

found in the following way. If the azimuth be reckoned
from the north point instead of the south point, we have for

the first observation:

cos h sin A= cos 8 sin t

cos h cos A= cos rp sin S sin
&amp;lt;p

cos 8 cos
,

and for the second observation below the pole:
cos h sin A= cos S sin t

cos h cos A = cos
rp

sin S sin
&amp;lt;p

cos 8 cos t .

Adding the first equation to the third and subtracting
the second equation from the fourth, and then dividing the

two resulting equations we easily find:

tang A= cotang ^ (t t)
i__JLl_&amp;gt; L

.

sin
&amp;lt;p

In case that t t is nearly equal to 12 hours of sidereal

time, A as well as 90 (* are small angles, and since

then I (7i -+-/& ) and \ (h h ) are nearly equal to
(p
and 90 d,

we get:

cos
cp tang 8

2. It is not necessary for applying any of .these methods
to know the latitude of the place or the time, or at least they
need be only very approximately known. But in case they
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are correctly known, any observation of a star, whose place

is known, with an azimuth instrument, gives the zero of

the azimuth, if the circle -reading is compared with the azi

muth computed from the two equations:

cos h sin A = cos sin t

7 V&amp;gt; I ^ (fl)
cos h cos A = cos

cp
sin o -+ sin (p cos o cos t

In case that a set of such observations has been made,

it is not necessary to compute the azimuth for each obser

vation by means of these formulae, but we can arrive at the

same result by a shorter method. Let 0, (~j\ 0&quot; etc., be the

several times of observation, whose number is w, let be

the arithmetical mean of all times and A
l}

the azimuth cor

responding to the time
,
then we have:

A = A* +
t
(&-ej + $ d

(6&amp;gt;
-6&amp;gt; )

2
,

etc.

and since S @ -h (&quot;) 6&amp;gt; -f- etc. = 0, we find:

-...
, d\A [(0 -0 )

2
-t-(0 - )

?

-K..&quot;|

-rf? L~ n J

_ _ 2 2
sinj- (0-- 0J

2

n di* n

where -2 2 sin \{S @,,)
7 denotes the sum of all the quan

tities 2 sin
|(6&amp;gt;

& )
2

. These have been introduced instead

of ^ (# #o)2 on account of the small difference and because

in all collections of astronomical tables
,

for instance in

5,Wariistorff s Hulfstafeln&quot;, convenient tables are given, from

which we can take the quantity 2 sin 2
\ t expressed in sec

onds of arc, the argument being t expressed in time. Now
we have accordin to No. 25 of the first section:

dl A cos cp sin AQ r . ,--- ----- r [cos A sin o -f- a cos
y&amp;gt;

cos A a \.dr cos A

Therefore if we add to the arithmetical mean of all read

ings of the circle the correction:

cos (p
sin A ,

v . o -,

^2 sin|(6&amp;gt;
6&amp;gt; )

2

[cos h sin + 2 cos (f cos ,dt ]
- -

cos

we find the value 4
19

which we must compare with the azi

muth computed by means of the formulae (a) for t=&
()

a.
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Differentiating the equation (a) or using the differential

formulae given in No. 8 of the first section, we find:

cos cos p sin p .

dA = -

r-
- dt tang A sin yJ

d&amp;lt;p-\
-. dS,

cos h cos h

hence we see, that it is especially advisable to observe the

pole-star near the time of its greatest distance from the me

ridian, because we have then p = 90 and A is nearly 180,

except in very high latitudes. Then an error of the time

has no influence and an error of the assumed latitude only
a very small influence on the computed azimuth and hence

on the determination of the zero of the azimuth.

3. If the zero of the azimuth has been determined, we
can find the bearing of any terrestrial object*). This can

also be determined, though with less accuracy, by measuring
the distance of the object from any celestial body, if the time,

the latitude and the altitude of the object above the horizon

are known.

For if the hour angle of the star at the time of the ob

servation is known, wre can compute according to No. 7 of

the first section its altitude h and azimuth a, and we have

then in the triangle formed by the star, the zenith and the

terrestrial object:

cos A= sin A sin H -f- cos h cos Hcos (a A}

where H and A are the altitude and the azimuth of the object
and A is the observed distance**). We find therefore a A
from the equation

cos A sin h sin H
cos (a A) , (A)

cos h cos H
hence also the azimuth of the object A^ since a is known.

The equation (^4) may be changed into another form

more convenient for logarithmic computation. For we have:

*) For this a correction is necessary, dependent on the distance of the

object, if the telescope is fastened to one end of the axis. See No. 12 of

the seventh section.

**) To the computed value of h the refraction must be added, and if the

sun is observed, the parallax must be subtracted from it. Likewise is H the

apparent altitude of the object, which is found by observation.

17
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, N cos (//-h /&amp;lt;)
-f- cos A

1 -+- cos fa A)== TT
~

cos h cos //

A
. cos(H A) cos A

1 cos fa A) = = ^
cos h cos H

. / A ^ sin 4- (A - ^4- A) sin j (A 4- H 7Q
tang 4 (a jl) = T-TT

; =7 7i r7zi/~T~r A\
cos 4- (A -h //H- A] cos (// -h A A)

or taking:

sin OS JJ) sin OS 70 , .

tang 4- (a Ay = T^&quot; (*)
cos A cos (S A)

If the terrestrial object is in the horizon, therefore #=0,
we have simply:

tang ,V ( AY = tang ^ (A 4- /O tang 4 (A /&amp;lt;)

Differentiating the formula for cos A? taking a A and

& as variable, we get:

cos A cos 77 sin (17 ^4)

and from I. No. 8:

cos S cos p .

da= at.
cos A

Hence we see, that the star must not be taken too far

from the horizon, in order that cos h may not be too small

and errors of the time and distance may not have too great

an influence on A.

If two distances of a star from a terrestrial object have

been observed, the hour angle and declination of the latter

can be determined and also its altitude and azimuth.

For if we denote the hour angle and the declination of

the object by T and 7), the same for the star by t and J,

we have in the spherical triangle formed by the pole, the star

and the terrestrial object:

cbs A= sin d sin L&amp;gt; -r- cos cos D cos (t J1

).

Then, if A is the interval of time between both observa

tions, which in case of the sun being observed must be ex

pressed in apparent time, we have for the second distance

A the equation:

cos A = sin sin D -h cos S cos D cos (t T-+- /).

From these equations wre can find D and t T, as will
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be shown for similar equations in No. 14 of this section. If

then the hour angle t at the time of the first observation be

computed, we can find T and /), and then by means of the

formulae in I. No. 7 A and H.

II. METHODS OF FINDING THE TIME OR THE LATITUDE BY AN
OBSERVATION OF A SINGLE ALTITUDE.

4. If the altitude of a star, whose place is known, is

observed and the latitude of the place is known, we find the

hour angle by means of the equation:

sin h sin a? sin 8
cos t=

cos
&amp;lt;p

cos o

In order to render this formula convenient for logarith

mic computation, we proceed in the same way as in the pre

ceding No. and we find, introducing the zenith distance in

stead of the altitude:

p.
i ,2 __

sin ?(z &amp;lt;P

cos \ (z H- (p H- 8) cos 4^ (gp H- 8 z)

or:
~ sn ~

cos &amp;lt;S . cos (*S z}

where S=
\, (z -+-

&amp;lt;p

-f- $)

The sign of is not determined by this formula, but t

must be taken positive or negative, accordingly as the altitude

is taken on the west or on the east side of the meridian.

If the right ascension of the star is
,
we find the side

real time of the observation from the equation:

0=*-ho,
but if the sun was observed, the computed hour angle is the

apparent solar time.

Example. Dr. Westphal observed in 1822, Oct. 29, at

Abutidsch in Egypt the altitude of the lower limb of the sun:

h = 33&quot; 42 18&quot;. 7

at the clock-time 20 1 16 m 20 s
.

The altitude must first be freed from refraction and pa
rallax; but as the meteorological instruments have not been

observed, only the mean refraction equal to 1 26&quot;.4 can be

used, which is to be subtracted from the observed altitude.

17*
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Adding also the parallax in altitude 6&quot;. 9 and the semi-dia

meter of the sun 16 8&quot;. 7, we find for the altitude of the

centre of the sun:

h = 33 57 7&quot;. 9.

Now the latitude of Abutidsch is 27 5 0&quot; and the de

clination of the sun was on that day:
- 13 38 11&quot;. 1

hence we have:

,S y = -f-7 39 50&quot;. 5, &amp;lt;?

= -h48&quot; 23 1&quot;.

and the computation is made as follows:

sm(S
y&amp;gt;)

9.1250385 cos S 9.9146991

sm(S 8) 9.8736752 cos (S z) 9.9G92707

8.9987137

9.8839698

tang 4 *
2 9.1147439 tang 4-* 9.5573719

t= 19 50 37&quot;. 98

*= 39 41 15 .96

t= 2s 38 &quot; 45 s
. 06.

Hence the apparent time of the observation is 21 h 21 &quot;

14 s
. 9, and since the equation of time is 16m 8 s

. 7, the mean
time is 21 h 5m 6 s

. 2. The chronometer was therefore 48 in 46 s
. 2

too fast, or -f- 48 &quot; 46 s
. 2 must be added to the time of the

chronometer in order to get mean time.

Since the declination and the equation of time are va

riable, we ought to know already the true time, in order to

interpolate, for computing ,
the values of the declination, and

afterwards the value of the equation of time, corresponding
to the true time. But at first we can only use an approx
imate value for the declination and the equation of time, and

when the true time is approximately known, it is necessary,

to interpolate these values with greater accuracy and to re

peat the computation.
The correction which must be applied to the clock-time,

in order to get the true time, is called the error of the clock*

whilst the difference of the errors of the clock at two dif

ferent times is called the rate of the clock in the interval of

time. Its sign is always taken so, that the positive sign

designates, that the clock is losing, and the negative sign,

that the clock is gaining. If the interval between both times
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is equal to 24 h
/ and /\ u is the rate of the clock in this

time, wo find the rate for 24 hours, considering it to be uni

form, by means of the formula:

24 A u AM
24 7

~~

~^T_
24

Differentiating the original equation:

sin h= sin
&amp;lt;f

sin 8 H- cos
&amp;lt;p

cos $ cos
,

we find according to I. No. 8:

dh= cos Adcp cos 8 sin p dt&amp;lt;

or since:

cos sin
7&amp;gt;

= cos
&amp;lt;f&amp;gt;

sin -A

we get:

clh -
A

cos (p
sm ^4 cos y tang A

The value of the coefficients of dh and
d([&amp;gt;

is the less,

the nearer A is =t= 90. In this case the value of the tangent
is infinity, hence an error of the latitude has no influence

on the hour angle and thus on the time found, if the altitude is

taken on the prime vertical. Since then also sin A is a max

imum, and hence the coefficient of dh is a minimum, an error

of the altitude has then also the least influence on the time.

Therefore, in order to find the time by the observation of an

altitude, it is always advisable, to take this as near as possible

to the prime vertical.

Since the coefficient of dh can also be written
cos o sin/?

it is evident, that one must avoid taking stars of great de

clination and that it is best to observe equatoreal stars.

If we compute the values of the differential coefficients

for the above example, we find first by means of the formula

sm^ = 8 * S n(
: ^ = -48&quot; 25 . 8

cos h

and then

dt= -h 1.5013 dh -h 0.9966 cly

or dl expressed in seconds of time:

dt -i- 0.1001 dh -t- 0.0664 dtp.

Therefore if the error of the altitude be one second of

arc, the error of t would be s
. 10, whilst an error of the

latitude equal to 1&quot; produces an error of the time equal to

s
. 07.
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Besides we see from the differential equation, that it is

the less advisable to find the time by an altitude, the less

the value of cos
&amp;lt;^,

and hence, the less the latitude is. Near
the pole, where cos

cp
is very small, the method cannot be

used at all.

5. In case that several altitudes or zenith distances have
been taken, it is not necessary, to compute the error of the

clock from each observation, unless it is desirable to know
how far they agree with each other, but the error of the

clock may be found immediately from the arithmetical mean of

all zenith distances. However, since the zenith distances do
not increase proportionally to the time, it is necessary, either

to apply to the arithmetical mean a correction, as was done in

No. 2, in order to find from this corrected zenith distance

the hour angle corresponding to the arithmetical mean of the

clock-times, or to apply a correction to the hour angle com

puted from the arithmetical mean of all zenith distances.

Let r, r
, r&quot;,

etc. be the clock-times, at which the zenith

distances, whose number be n, are taken
;

let T be the arith

metical mean of all, and Z the zenith distance belonging to

the time 7
1

,
then we have :

etc.,

where t is the hour angle corresponding to the time 7
T

,
or

since r T-t- r T-f-r&quot; T-j-.. .=0:

.-_... _ ^z _ ,.

n (it* n

If we substitute here the expression for
2
found in No. 25

of the first section, we finally get :

z -h z -h 2&quot; 4- . . . cos^cosw ^2sin^(r TV
/j =: ^- cos^l cos p .

??. sin Z n

With this corrected zenith distance we ought to com

pute the hour angle and from this the true time, which com

pared with T gives the error of the clock. But if we com-
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pute the hour angle with the uncorrected arithmetical mean

of the zenith distances, we must apply to it the correction:

dt cos cos (p
2 2 sin \ (r 71

)
2

- -^ cos A cos
/&amp;gt;

dz sin Z n

or if we substitute for ^ its value according to No. 25 of
dz

the first section, we find this correction expressed in time:

cos p cos A JfJ^sin
;[ (r T7

)

2
, .

15 sin t n

where A and p are found by means of the formulae:

sin t 2
sin A= . cos o

smZ
sin t

and sin p= - cos if.smZ

These, it is true, do not determine the sign of cos A and

cos p ;
but we can easily establish a rule by which we may

always decide about the sign of the correction ().

If the hour angles are not reckoned in the usual way,

but on both sides of the meridian from 0&quot; to
180&quot;,

the cor

rection is always to be applied to the absolute value of
,

and its sign will depend only upon the sign of the product

cos A cos p, which is positive or negative, if cos p and cos A

have the same or opposite signs. Now we have:

/ sin &amp;lt;K
, v /sin OP \

sin OP I 1 cos z sm o I cos ~
)

V sin
y&amp;gt;

\sm o /

cos p= s~ ---==:
. -ja- ?

sm z cos o sm z cos o

/ sin $\
, ^ /cos z sin (p \

sin (f I cos z
}

sin o I ; ^
\ sm (p/ \ sm o /

cos A= - - = --

sm z cos (p
sin z cos (p

Therefore, if &amp;lt;) &amp;lt;? y, cos p is always positive,

n . . ... .,&amp;gt; sin
and cos A is positive, if cos z

&amp;gt;- . ,

sm&amp;lt;p

sin o

inegative, if cos j

siny
and if &amp;lt;)

&amp;gt; y, cos A is always negative,
sin (p

sin 8
and cos p is negative, if cos z

... . r, ^ sm (p

positive, it cos z &amp;lt; i,
sin o

Therefore if we take the fraction

sin o .r,

sin

and
sin

^, if
sm d 7
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the two cosines have the same sign and the correction (a) is

negative, if cos z is greater than this fraction
;
but they have

opposite signs and the correction (a) is positive, if cos z is

less than this fraction. For stars of south declination cos A
and cos p are always positive, hence the sign of the correc

tion is always negative*).

Dr. Westphal took on the 29 f!i of October not only one
zenith distance of the sun but eight in succession, namely:

True zenith distance of

Chronometer -time the centre of the sun r T 2 sin { (rT) 2

20h 16m 20 s 56 2 52&quot;. 1 3m 32&quot; 24&quot;. 51

17 21 55 52 51 .5 2 31 12 .43
18 21 42 51 .0 1 31 4 .52
19 21 32 50.5 31 0.52
20 21- 22 50 . 29 . 46
21 23 12 49.4 1 31 4.52
22 23 2 48 . 9 2 31 12 . 43
23 25 54 52 48 . 4 3 33 24 . 74

20h 19 ra 51 s .9 55 27 50&quot;. 2 10&quot;. 52.

Now the arithmetical mean of the zenith distances is

55 27 50&quot;. 2 and the declination of the sun -- 13 38 14&quot;. 7,

hence we find the hour angle:

2h35 M3s. 18.

to which value the correction must be applied. But we
have :

sin p = 9. 8307 9, sin A = 9 .86881,

hence, as the declination is south, the correction is:

8&quot;. 32 in arc or s
. 55 in time.

With the corrected hour angle 2 h 35m 12 s .63 we find

the mean time 21 h 8m 38 s

.70, hence the error of the clock

is equal to :

-f_ 48m 46s. 8.

6. If an altitude of a star is taken and the time known,
we can find the latitude of the place. For we have again
the equation:

sin h= sin
90 sin 8 -f- cos

y&amp;gt;

cos 8 cos t.

*) Warnstorff s Hulfstafeln pag. 122,
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Taking now:

sin S= M sin N,

cos cos t= Af coslV,

we find :

sin h = M cos (y xV),

and hence:

sin h sin Ar
.

(H)

The formula leaves it doubtful, whether the positive or

negative value of
if

N must be taken, but it is always easy to

decide this in another way. For if in

Fig. 6 we draw an arc S Q perpendic
ular to the meridian, we easily see that

JY= 90 F Q or equal to the distance of

Q from the equator, hence that Z Q=
(f N, whilst M is the cosine of the

arc S Q. Therefore as long as S Q
intersects the meridian south of the

zenith, we must take the positive value
(p JV, but N

tp

is to be taken, when the point of intersection lies north of

the zenith. In case that t
^&amp;gt; 90, the perpendicular arc is

below the pole, hence its distance from the equator is
^&amp;gt;

90&quot;

and the zenith distance of Q equal to N
&amp;lt;/

. Therefore in

this case the negative value N
(f

of the angle found by
the cosine is to be taken.

If the altitude is taken on the meridian, we find
(f by

means of the simple equation
C\ I

9p
= d== z

,

where the upper or lower sign must be taken, if the star

passes across the meridian south or north of the zenith. In

case that the star culminates below the pole, we have:

Dr. Westphal in 1822 October 19 at Benisuef in Egypt
took the altitude of the centre of the sun at 23 h

l
m 10 s mean

time and found for it 49 17 22&quot;. 8. The decimation at that

time was - - 10 12 16&quot;. 1, the equation of time --15m O s

.O,

hence the hour angle of the sun 23 h 16m 10 s= 10 n 57 30&quot;.0.

We find therefore:
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tang &amp;lt;5

= 9. 2552942,,

cos t = 9 . 9920078

N= 10 23 23&quot;. 67

sin iV= 9. 2561063,,

sin S= 9^2483695,,
&quot;070077368

sin A 9 . 8796788

&amp;lt;p

iV= 39 29 54&quot;. 51

hence
&amp;lt;p

= 29 6 30 . 84.

In order to enable us to estimate the effect, which any
errors of h and t can have on

&amp;lt;p,

we differentiate the equa
tion for sin h and find according to I. No. 8 :O

dtp sQvAdh cos ip tang A . dt.

Here the coefficients are at a minimum, when A= or

= 180. The secant of A is then =t= 1
,
hence errors of the

altitude are then at least not increased and since tang A is

then equal to zero, errors of the time have no influenze at

all. Therefore in order to find the latitude as correct as

possible by altitudes, they must be taken on the meridian or

at least as near it as possible.

For the example we have A = 1640 .l, hence we

find:

dy&amp;gt;

= 1.044 JA + 0. 2616 c//,

or if dt be expressed in seconds of time:

ety= 1.044 dA 4-3. 924 rf*.

If several altitudes are taken, we find according to No. 5

the altitude corresponding to the arithmetical mean of the

times by means of the formula:

7i4-/* 4-/i&quot;4-... cos S cosy ^2sin4(r T7

)

2

//=--- -- h cos^lcosp
n cos H n

1. If the altitude is taken very near the meridian, we

can deduce the latitude from it in an easier way than by

solving the triangle. For since the altitudes of the stars ar

rive at a maximum on the meridian and hence change very

slowly in the neighbourhood of the meridian, we have only

to add a small correction to an altitude taken near the merid

ian, in order to find the meridian altitude. But this in con

nection with the declination gives immediately the latitude.

This method of finding the latitude is called that by
circum-meridian altitudes.
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From:
cos z = sin

&amp;lt;p

sin 8 -f- cos
&amp;lt;p

cos S cos t,

we get:
cos 2 = cos (y $) 2 cos 90 cos sin ^ 2

2

and from this according to the formula (19) in No. 11 of

the introduction:

a ,

2 cos OP cos . 2 cosy
2 cos S* .

fi

-=
&amp;lt;p

o -h rr-^ ~
r- sin \t

* -
cotang (5? S) sin I r .

sin(p o) sin(y&amp;gt; tf)
2

or denoting -?^ by 6:
3 J

6 . sin &amp;lt;

2
4- 6

a
. cotang (y

Therefore if we compute rp
() and b with an approx

imate value of
(fy,

and take the values of 2 sin | f
2 and

2 sin | ^ from tables, the computation for the latitude is ex

ceedingly simple. Such tables are given for instance in Warn-
storfFs Hulfstafeln

,
where for greater convenience also the

logarithms of those quantities are given. If the value of y
should differ considerably from the assumed value, it is ne

cessary, to repeat the computation, at least that of the first

term. Stars culminating near the zenith must not be used

for this method, since for these the correction becomes large
on account of the small divisor

(p d.

Westphal in 1822 October 3 at Cairo took the zenith

distance of the centre of the sun at O 1 2 2 s
. 7 mean time

and found 34 1 34&quot;. 2. The declination of the sun being
-3 48 51&quot;. 2, the equation of time --10m 48 s

. 6, and hence

the hour angle -+- 12 n 5r s

.3, we find from the tables:

log 2 sin 4^ t~ = 2.51 105 log 2 sin 4 t* = 9.4060.

Taking (f
= 30 4

,
we have log 6 = 0.1 9006 and then

the first term of the correction is 8 22&quot;. 47
,

the second

+ 0&quot;. 91, therefore we have:

Correction 8 21&quot;. 56

? + &amp;lt;?= 30 12 43&quot;. 00

p= 30 4 21&quot;.44.

A change of 1 in the assumed value of
(f&amp;gt; gives in this

case only a change of 0&quot;. 30 in the computed value of y ,
and

the true value, found by repeating the computation, is:

(/ ==30 4 21&quot;. 54.

The formula (^4) is true, if the star passes the meridian

south of the zenith. But if the declination is greater than
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the latitude and thence the star passes the meridian north of

the zenith, we must use ti y instead of
r/&amp;gt; J, and we get

in this case:

v cos (f cos S cos re
2 cos 8 2

&amp;lt;p

= d z -+- -T-TV-
2 sin

^-
r -

. ^ cotang (8 y) 2 sin It *
.

sm(d y) sin (d y)
2

Finally, if the star be observed near its lower culmina

tion, we have, reckoning t from the lower culmination:

cos z= cos (180 (f &amp;lt;?)
4- 2 cos

y&amp;gt;

cos 8 sin ^ t*

and hence :

CO- 180-4-,- --

If the latitude of a place is determined by this method,
of course not only a single zenith distance but a number of

them are taken in succession in the neighbourhood of the

meridian. Then the values of 2 sin \
2 and 2 sin \ t

4 must be

found for each t and the arithmetical means of all be mul

tiplied by the constant factors. The correction, found in this

way, is to be added to the arithmetical mean of the zenith

distances *).

The reduction to the meridian can also be made in an

other form. For from the equation:
cos z cos ((p 8) = 2 cos y cos 8 sin \ t

1

follows :

.
&amp;lt;f&amp;gt;

&amp;lt;? -h z
. ip

8 z
sm -- sm^^ ~----- = cos (f cos o sin \ t

2
.

Now if we take the reduction to the meridian:

we find:

hence :

COS
(f&amp;gt;

COS 8
- -- - - sin-

;

--
s

- -

sin ((f
8 -+- 1 .r)

an equation which may be written in this way:
sin la: cos rp cos 8 sin

(g&amp;gt; 8)-----
. x= --

^r ^ sm o- t
-- ---

s~T~~i N
&quot;

\x 5111(9- o) sin ((p o-\- \.r)

Now it has been proved in No. 10 of the introduction, that

*) In case that the snn is observed, the change of the declination must

be taken into account. See the following No.
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a
=Vcosa, neglecting terms of the fourth order. If we

apply this and take as a first approximation for x the value

from the equation:
. coso&amp;gt; cos _.

t= . ; v
-2sm 4 /

2
(72),

sin
(&amp;lt;p

d)

we find :

3
/ i _ j.

sin
(&amp;lt;P ^)

sin (cp
S -+- -^ x)

or if we find x from this equation, write in the second num
ber instead of x, and denote the new value of x by :

,
sin (tp 8} %

I = I
- r-7 7- , j-v

sec T .

sin (y d H- j |)

This second approximation is in most cases already suf

ficiently correct. But if this should not be the case, we com

pute (f-
from

,
then by means of (5), and find the cor

rected value:

With the data used before, we find:

I= 8 22&quot;. 47

log |= 2.701 11

sin
(y&amp;gt; 3)= 9.74620

coscc
(99 S-+- i

|) = 0.25293

log I = 2.70024,

hence 8 22&quot;. 47 and
ff
= 30 4 21&quot;. 53.

8. If we take circum-meridian altitudes of the sun, we

must take the change of its declination into account, hence

we ought to make the computation for each hour angle with

a different decimation. But in order to render the reduction

more convenient, we can proceed in the following way:
We have:

, ^ COS OP COS $
&amp;lt;p

= z + 8 -
/ 2sin,U 2

.

sm(y&amp;gt; o)

Now if D is the declination of the sun at noon, we can

express the declination corresponding to any hour angle t

by .D-|-/?f, where ft is the change of the declination in one

hour and t is expressed in parts of an hour. Then we
have:

sin
(&amp;lt;p
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If we take now:

COS (f COS .. COS OP COS 8^
ftt -. 7*: 2 sm *

2=
.- -f-

A- 2 sin | ( /+ )
-

, (4)
sin (90 d)

sm(r/&amp;gt; 5)

we must find ?/ from the following equation:

or since:

sin a 2
sin b

1 = sin (a -f-
/&amp;gt;)

sin (a /&amp;gt;)

.
, P sin (tp 8) t

we have:

2 cosy cos sin

sin
(&amp;lt;p 8) -20G265~

^
cos

y. cos 3600~xl5

where the numerical factor has been added, because we take

sin (-}-?/) = I,
and the unit of t is one hour, whilst the unit

of sin t is the radius or rather unity. If we denote the

change of the declination in 48 hours expressed in seconds

of arc by ( ,
we have fi

=
,
or if we wish to express y in

seconds of time, ft
= . We have therefore :

and then we find the latitude from each single observation

by means of the formula:

The quantity y is the hour angle of the greatest altitude,

taken negative.

For in I. No. 24 we found for this the following ex

pression :

dS , ,,,206265=
[tang 90 tang tf] ^

where t is expressed in seconds of time and
c

is the change

of the declination in one second of time. But this is equal

to ~ -- -
,
hence the hour angle at the time of the greatest

altitude, expressed in seconds of time, is :

*) To this there ought to be added still the second term dependent on
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u ,
206265

720

which formula is the same as that for y taken with the op

posite sign. Hence t -+- //
is the hour angle of the sun, reck

oned not from the time of the culmination but from the time

of the greatest altitude.

Therefore if circum-meridian altitudes of a heavenly body
have been taken, whose declination is variable, it is not ne

cessary to use for their reduction the declination correspond

ing to each observation, but we can use for all the declina

tion at the time of culmination, if we compute the hour angles

so that they are not reckoned from the time of the culmi

nation but from the time of the greatest altitude. Then the

computation is as easy as in the former case, when the de

clination is supposed not to change.

For the observation made at Cairo (No. 7) we have :

100-^= 3.4458,, and D = 3 48 38&quot;. 57,

with this we get:

^= + ys.6, hence t +y = 13m s
. 9

and hence we find for the first term of the reduction to the

meridian: =-8 35&quot;. 00.

On account of the second term multiplied by sin ~ 4 we

must add to this -f- 0&quot;.91,
and we finally find

cp
= 30&quot;4 21&quot;.54.

In case that only one altitude has been observed, it is

of course easier to interpolate the declination of the sun for

the time of the observation
;
but if several altitudes have been

taken, the method of reduction just given is more convenient.

9. Since the polar distance of the pole-star is very

small, it is always in the neighbourhood of the meridian, and

hence its altitude taken at any time may be used with ad

vantage for finding the latitude; but the method given in

No. 7 is not applicable to this case, as the series given there

is converging only as long as the hour angle is small. In

this case, the polar distance being small, it is convenient to

develop the expression for the correction which is to be ap

plied to the observed altitude according to the powers of

this quantity.
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Fig 7
If we draw (Fig. 7) an

arc of a great circle from

the place of the star per

pendicular to the meridian,
and denote the arc of the

meridian between the point
of intersection with this arc

and the pole by a?,
the arc between the same point and the

zenith by z
*/, where y is a small quantity, we have :

90
&amp;lt;p

= z y + x,

or 9?= DO z-t-y x,

and we have in the right angled triangle :

tang x= tang p cos t

. cos 2 (a)
cos (z y) =

cos u

We get immediately from the first equation:
x= tang p cos t ^ tang p

3 cos t
3

,

neglecting the fifth and higher powers of tang p, or neglect

ing again terms of the same order:

x= p cos t + 3 p
3 cos t sin t

z
. (6)

If we develop the second equation (a), we find:

1 cos u
sin y= cotang z h &quot;2 sin

2
A y . cotang z,

or neglecting the fifth and higher powers of u:

sin y= cotang z (\ u 1
-+- ,

3

5

T w 1

) + 2 sin
2
\y cotang z.

But we get from the equation
sin u= sinp sin t :

u= p sin t | p
3 sin t cos t,

hence substituting this value in the equation above we find,

again neglecting terms of the fifth order:

3/~TP
2
sin if

2
cotg2 ^p 4

sin*
2
(4 cos*

2

Ssin^cotgz-h^cotgz.^
2

. (c)

This formula, it is true, contains still y in the second

member, but on account of the term | cotang z . y
1

being very

small, it is sufficient, to substitute in this term for y the

value computed by means of the first term alone. Thus we
obtain :

&amp;lt;f&amp;gt;

=
90&quot; z p cos t -+- p* sin t

2
cotang z } p

3 cos t sin t
2

~f~ Ti^
4

in t* (5 sin t
1 4 cos* 2

) cotang z

+
{/&amp;gt;*

sin f* cotang 2 3
. (A}

Since it would be very inconvenient to compute this
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formula for every observation
,

tables are every year pub
lished in the Nautical Almanac and other astronomical alma

nacs, which render the computation very easy. They embrace
the largest terms of the above expression, which are always

sufficient, unless the greatest accuracy should be required.
If we neglect the terms dependent on the third and fourth

power of p, we have simply: *)

if
= 90 z p cos t + | p

2
sin t

2

cotang z.

If we denote thus a certain value of the right ascension

and polar distance by and pM the apparent values at the

time of the observation being
= H- A , p = PO 4-

A;&amp;gt;

we find substituting these values:

tp
= 90 z p tt

cos t -h I p
2
cotang z sin /

2

Ap cos / p sin / A,
where t

()

=
.

We find now in the Almanac three tables. The first

gives the term p cos *
,
the argument being 0, since this

alone is variable. The second table gives the value of the

term | p^ cotang z sin 2
,
the arguments being z and &. Fi

nally the third table gives the term dependent on
6&amp;gt;, A

and &p
&amp;lt;Ap

cos p sin t A ,

the arguments being the sidereal time and the days of the

year.

Tables of a different construction have been published

by Petersen in Warnstorff s Hulfstafeln pag. 73 and these

embrace all terms and can be used while the polar distance

of the pole-star is between the limits 1 20 and 1&quot; 40 . Let

p again be a certain value of p, for which Petersen takes

p (]

= 1 30
,

then the formula (A) can easily be written in

this way:

*) The term multiplied by y/ is at its maximum, when t= 54 44 and
its value, if we take ^ = 140

,
is then only 0&quot;.G5. The terms multiplied

by p
1 are still less, unless z should be very small. These terms can be

easily embraced in the tables, as the first may be united with p cos /, the

other with 4j
2
sin t

2
cotang z.

18
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2

&amp;lt;r,
= 90 z [p cos /+ \p

* cos /sin/ 2
] I f .,

1 )#
J cos /sin/&quot;

7&amp;gt;o PoVo

H ^ cotang.z [4;J
2 sin/

2
-h^-, P O

4
sin /

2
(5 sin/ 2 4 cos/ 2

)]

;V

f
*
cotang z 3

.

Po&quot;

-

If we put now:

P

p cos / -+- 3 p

A

^/&amp;gt;

2
sin /

2
-f- -j^Po

4
s in *

2 & s in 2 4 cos/ 2
) ==/?,

-* J 4

p
4
sin /

4
cotang c 3 = ^ /I

4

/9
2

. cotang s
3=

//,

we obtain:

tp
= 90 ~ Aa y-\-A*{3 cotang ,~ -+- u.

Now four tables have been constructed, the first two of

which give and ft, the argument being t
,
a third table gives

the value of the small quantity ; ,
the arguments being p and t

and finally a fourth table gives the quantity /, which is

likewise very small, the arguments being y = A^ ft cotang 2

and 90 z. These tables have been computed from t = O h

to t= 6 h
. Therefore if t

&amp;gt; 90, the hour angle must be

reckoned from the lower culmination, so that in this case

we have:

&amp;lt;p

= 90 z -h A a -h y + A 1

ft cotang z -f- ft.

Example. In 1847 Oct. 12 the altitude of Polaris was

taken with a small altitude and azimuth instrument at the

observatory of the late Dr. Hulsmann at Diisseldorf and it

was at 18 h
22&quot;

1 48 S .8 sidereal time h = 50&quot; 55 30&quot;. 8, which

is already corrected for refraction.

According to the Berlin Jahrbuch the place of Polaris

on that day is:

= lh5m3is.7
j

5= 88 29 52&quot;. 4.

Hence we have:

;
, = 1 30 7&quot;. 6, /=l?h 17 17s. 1 = 259 19 1C&quot;. 5,

and:

log A= 0.0006108

and we obtain by means of the tables or the formulae:
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therefore :

Aa= + 16 42&quot;. 26

y!
2

/3cotangz = -t- 1 24 . 33

^ = -+- . 02

sum= 4- 18 6&quot;. 61

hence:
&amp;lt;j&amp;gt;

=51 13 37&quot;. 41.

10. Gauss has also published a method for finding the

latitude from the arithmetical mean of several zenith distan

ces, taken long before or after the culmination, which is

especially convenient for the pole-star.

If an approximate value
(f ()

of the latitude (p is known,
and & is the sidereal time, at which the zenith distance z

is observed, we can compute from () and
(f (}

the value of

the zenith distance by means of the formulae:

tang x= cos t cotang S

f N
sin UP O -f- x)

cos.r

and then we obtain:

hence :

uV &quot;

:

sm o cos (90

cos;r sin

# is again the arc between the pole and the point in which

an arc drawn through the star, and perpendicular to the me
ridian intersects the latter and since the length of this arc

is always between the limits =t= 90
t),

we can take in case

P ,i i sin -,-, cos
(&amp;lt;p -f- r) .. ./,

ot the pole-star as well as equal to unity, if
cos x sin

the latitude is known within a few seconds and d(f is there

fore a small quantity.

If another^ zenith distance has been taken at the sidereal

time
,
we have:

tang x cos t tang

-;
sin o&quot;

.

cos =
,sm(&amp;lt;f&amp;gt; n -i-x)

and:

d(f&amp;gt;

18*
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or, if Z denotes the arithmetical mean of both observed ze

nith distances equal to *

(X -{- 3, ):

^ ~
. /d d\M 7

+
/ )\dcp da) /

where :

sin 8 cos (OP O -f- a:)
yl = -

.

cos x sm
f^\

sin $ cos (9^0 -f- x}

cosr sin

or: A = cotang . cotang ($&amp;gt;$
-+- .r)

^
,

1? = cotang . cotang (9^0 H~ ^ )

and finally, if we find y from the original equation:

eos = sin
(p (}

sin $ -f- cos
(f&amp;gt;

cos ^ cos /

we obtain also:

cos QD sin 8 sin cp cos (5

iCd-hB)= r cos 4 (&amp;lt;+/). (^/)
sin Z sin Z

In case of the pole -star we have simply:

dy&amp;gt;

= i ( -h ) Z. (e)

If several zenith distances have been observed, we ought
to compute for each sidereal time separately and we should

then obtain :

-i
[ + + +... + ,,--,]-

f j- -f- J
w ^ d c? /

where Z again denotes the arithmetical mean .of all observed

zenith distances. But the following way of proceeding is more

simple.

If we denote by () the arithmetical mean of all sidereal

times and put:

i}
= r, 6&amp;gt;

= T etc. %

and then denote by the zenith distance corresponding to

,
we obtain in the same way as in No. 5 of this section:

sn
n

Now if T is taken from the following equation:
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the zenith distances z and z at the times # T and @ -f-7

are :

c.
d*=-
d t

hence :

and we obtain according to the formula
(/&quot;) simply:

d&amp;lt;f

= &quot;

,

if the values of A and B corresponding to z are denoted

by A .and B .

Therefore if several zenith distances of a star have been

observed, we take the mean of the observed clock-times and

subtract from it each clock-time without regard to the sign.

These differences converted into sidereal time give the quan
tities r, for which we find from the tables the quantities

2 sin \ T -. From the same tables we find the argument T

corresponding to the arithmetical mean of all these quanti

ties and compute the hour angles :

6&amp;gt; ( -t- T) = t

(a T) = t

and then z and z by means of the formulae:

tang x = cos t cotang

sin 8
cos z= sin (gpj) + x)

cosx

and tang x cos t cotang

,
sin

cos 2 = -

,
sin (rp a -{-x).

cosx

In case of the pole-star we then have immediately:

where Z is now the arithmetical mean of all observed zenith

distances. For other stars the rigorous formula for
d&amp;lt;f

must

be computed, namely:

where A and B are obtained by means of the formulae (6),

(c) or
(rf) after taking = z and = z *).

*) WarnstorfFs Hulfstafeln pag. 127.
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Example. In 1847 Oct. 12 the following ten zenith dis

tances of Polaris were taken at the observatory of Dr. Hiils-

mann :

Sidereal time. Zenith distance. T 2sin^T
2

17h56 &quot;21s.4 39&quot; 13 42&quot;. I 13 n 19.75 348.75
59 54 .5 12 17 . 6 9 46 .65 187.69

18 3 29 .7 11 6 . 8 6 11 .45 75.24
62.9 103.6 3 38 . 25 25 . 98

8 35 .0 90.6 1 6 . 15 2.39
115.1 82.8 123.95 3 . 85

13 32 .0 77.6 3 50 .85 29 .06

16 34 .0 64.8 6 52 .85 92.95
18 28 . 1 5 15 .3 8 46 .95 151 .43

22 48 .8 3 42 . 7 13 7 . 65 __338 . 28

.15 398 38&quot;.39 ~~125756
Refr. 46&quot;.50 T= 7 59*. 83

Z= 399r
24&quot;.89

= 2542 24&quot;.3 =258 2 19&quot;. 2.

Now taking:

7&amp;gt;

= 51 13 30&quot;.0,

we obtain:

z= 39 12 37&quot;. 56 z = 39 6 34&quot;. 54

(zH-y)= 399 36&quot;.05

.}0 + 2)- = +11&quot;. 16,

hence :

= 51 13 41&quot;. 16.

III. METHODS OF FINDING BOTH THE TIME AND THE LATITUDE
BY COMBINING SEVERAL ALTITUDES.

11. If we observe two altitudes of stars, we have two

equations :

sin h = sin
&amp;lt;p

sin 8 -+- cos
&amp;lt;p

cos 5 cos t,

sin k = sin
y&amp;gt;

sin $ + cos
&amp;lt;p

cos S cos t .

In these equations, since we always observe stars, whose

places are known, &amp;lt;) and d are known, and further we have :

= * + (* f)
= t -+-(& 0) ( ).

Now since a and 6/ B are likewise known, the latter

being equal to the interval of time between the two obser

vations, the two equations contain only two unknown quan-
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titles and f/,
which therefore can be found by solving

them. Thus the latitude and the time can be found by ob

serving two altitudes, but the combination of two altitudes

in some cases is also very convenient for finding either the

latitude or the time alone.

We have seen before, that if two altitudes of the same

star are taken at its upper and lower culmination, their arith

metical mean is equal to the latitude, which thus is deter

mined independently of the declination. This is even found

at the same time, since it is equal to half the difference of

the altitudes.

Likewise we can find the latitude by the difference of

the meridian zenith distances of two stars, one of which cul

minates south, the other north of the zenith. For if S is the

declination of the first star, its meridian zenith distance is:

v

and if d is the declination of the other star, north of the ze

nith, we have:
, s ,

z =o y,

and therefore we get:

p^tf+tfO-M (*-* )

12. If two equal altitudes of the same star have been

observed, we have:

sin h= sin cp
sin S -\- cos y cos 8 cos t,

. .

sin h= sin
&amp;lt;p

sin 8 -\- cos rp cos 8 cos t
,

from which we find t = t . The altitudes therefore are

then taken at equal hour angles on both sides of the meridian.

Now if u is the clock-time of the first, u that of the second

observation, J (u -{- u ) is the time, when the star was on the

meridian and since this must be equal to the known right

ascension of the star, we find the error of the clock equal to :

a 4
&amp;lt;&amp;gt;

-t- M).

This method of finding the time by equal altitudes is

the most accurate of all methods of finding the time by al

titudes. Since neither the latitude of the place nor the de

clination of the heavenly body need be known and since

for this reason it is also not necessary to know the longi

tude of the place, this method is well adapted to find the

time at a place, whose geographical position is entirely un

known. It is also not all necessary to know the altitude
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itself, so that it is possible to obtain by this method accurate

results, even if the quality of the instrument employed does

not admit of any accurate absolute observations. All which is

required for this method is a good clock, which in the in

terval between the two observations keeps a uniform rate,

and an altitude instrument, whose circle need not be accu

rately divided.

We have hitherto supposed, that the declination of the

heavenly body does not change. But in case that altitudes

of the sun are taken, the arithmetical mean of both times

does not give the time of culmination, for, if the declination

is increasing, that is, if the sun approaches the north pole,
the hour angle corresponding to the same altitude in the

afternoon will be greater than that taken in the forenoon and
hence the arithmetical mean of both times falls a little later

than apparent noon. The reverse takes place if the decli

nation of the sun is decreasing. Therefore in case of the

sun a correction dependent on the change of the declination

must be applied to the arithmetical of the two times. This

is called the equation of equal altitudes.

If S is the declination of the sun at noon, A&amp;lt;)
the change

of the declination between noon and the time of each obser

vation, we have:

sin h = sin cp sin (8 A&amp;lt;?) -+- cos y cos (8 A 8) cos t

sin h = sin y sin (8 -f- A d) H- cos
y&amp;gt;

cos (d 4- A 8) cos t .

Let the clock-time of the observation before noon be de

noted by M, the one in the afternoon by u\ then (u -\-ti) U
is the time, at which the sun would have been on the me

ridian, if the declination had not changed.

Then denoting half the interval between the observa

tions (M M) by r, the equation of equal altitudes by x,

the moment of apparent noon is given by U -}- x and we
have:

t = T (u u) -t- x= r -+ x,

t = 4 (11 11) x = T
.r,

and also:

sin h = sin
(f

sin (S A&amp;lt;?) + cos (p cos (8 A&amp;lt;?)
cos (T -f- a:)

and :

sin h= sin
&amp;lt;f&amp;gt;

sin (8-{-&8) -f- cos y cos ($-hA$) cos (r #).
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From these expressions for sin h we find the following

equation for x:

0=singpcos Ssill&S cosy sin $sin A^OSTCOS x -\- cosy cos &d cos $sinr sin.r.

Now in case of the sun x is always so small, that we
can take cos x equal to 1 and sin x equal to x. Then we

obtain, taking also &S instead of tang /\r):

r = _/tang9,_tang^\
v sin r tang t /

If we denote now by /&amp;lt; the change of the declination

during 48 hours, which may be considered here to be pro

portional to the time, we have:

A --*&amp;gt;.

hence:
U / T T \

x == --
tang a&amp;gt; -f- tang o }

48 \ smr tang T /

or if x is expressed in seconds of time :

X~
-7 1A (

~ tanS 0&amp;gt;

+&quot;

~
tallg ^

)720V smr tang r /

In order to simplify the computation of this formula,
tables have been published by Gauss in Zach s monatliche

Correspondent Vol. XXIII, which are also given in Warn-
storTs Hulfstafeln. These tables, whose argument is r, give
the quantities:

720 sin r
~ A

and:

J r

720 tang r

and thus the formula for the equation of equal altitudes is

simply:
x= Au tang y&amp;gt;

-+- J3u tang 8. (A)

Differentiating the two formulae (a), taking d as con

stant, we find:

*) We find this also, if we differentiate the original equation for sin A,

taking 8 and t as variable, since we have x= &.
do

**
) Since the change of the declination at apparent noon is to be used,

we ought to take the arithmetical mean of the first differences of the de

clination, preceding and following the day of observation. Instead of this

the almanacs give the quantity fi.
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d/i = cos A d(p cos
&amp;lt;p

sin A dt

dh = cos A
d(f&amp;gt;

cos (p sin A dt.

In these equations dt has been taken equal to dt, since

we can suppose, that the error committed in taking the time

of the observation is united with the errors of the altitudes.

Since we have now A A, we obtain:

dh = cos A drp -(- cos rp sin A dt,

dli = cos A
d&amp;lt;f

cos rp
sin A 1

dt,

and :

cos (f
sin A

Therefore we see, that we must observe the heavenly

body at the time, when its azimuth is as nearly as possible

-4-90&quot; and --90.

In 1822 Oct. 8 Dr. Westphal observed at Cairo the fol

lowing equal altitudes of the sun:

Double the altitude of Chronometer -time_

(Lower limb) forenoon afternoon Mean

73 21 h 7m 27 2h 33m 59 s 23 h 50m 43 s .O

20 8 24 33 3 43 . 5

40 9 23 32 5 44 .

74 10 18 31 9 43 .5

20 11 16 30 12 44 .0

40 12 11 29 14 42 .5

75 13 11 28 13 42 .0

20 14 9 27 15 42 .0

40 15 10 26 15 42 .5

76 16 6 25 20 43 .

Hence we find for the arithmetical mean of all obser

vations :

23 h 50 &quot; 43 . 00.

Now half the interval between the first observation in

the forenoon and the last in the afternoon is 2 h 43m 16 s and

that between the last observation in the forenoon and the

first in the afternoon 2 h 34m 37% hence we take :

T= 9h
38&quot; 56 s

. 5 = 2&amp;gt;&amp;gt; . 649.

If we compute with this A and B, we find:

logr 0.42308 0.42308

COSCCT 0.19435 cotang r 0.08028

Compl. log 720 7.14267 7.14267

log 4 &quot;7/7601 logJS 7.6460,
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and as:
= 6 7

, y&amp;gt;

= 304
and:

log &amp;lt;*

= 3.4391.,
we obtain:

x= -f- IQs . 4ft.

Therefore the sun was on the meridian or it was appa
rent noon at the chronometer-time 23 h 50m 53 s

. 46. Now since

the equation of time was -- 12 h 33 s

.18, the sun was on the

meridian at 23 h 47 m 26 s .82 mean time, and hence the error

of the chronometer was:

3 26 . 64.

If we compute the differential equation and express dt

in seconds of time, we find:

dt= Qs. 048 (dti dK),

and we see, that if an error of 10&quot; was committed in taking
an altitude, the value of the error of the clock would be

s
. 48 wrong.
We can make use of this differential formula in com

puting the small correction, which must be added to the

arithmetical mean of the times, if the altitudes taken before

and after noon were not exactly but only nearly equal. For
if h and h are the altitudes taken before and after noon and
we take h h=dh\ we ought to apply to h the correc

tion dh\ and hence the correction of U is:

_ _dh _
30 cos

&amp;lt;f

sin A
dh cos li

30 cos
(p cos 8 sin t

In case that the greatest accuracy is required, such a

correction is necessary even if equal altitudes have been taken.

For although the mean refraction is the same for equal ap
parent altitudes, yet this is not the case with the true refrac

tion, unless the indications of the meteorological instruments
be accidentally the same. Therefore if o is the refraction for

the observation in the forenoon, o-+-dy that in the after

noon, the heavenly body has been observed in the afternoon
at a true altitude which is too small by do, and hence we
must add to U the correction:

-
oO cos



284

13. Often the weather does not admit of taking equal
altitudes in the forenoon and afternoon. But if we have
obtained equal altitudes in the afternoon of one day and in

the forenoon of the following day, we can find by them the

time of midnight. The expression for the equation of equal
altitudes in this case is of course different.

If T is half the interval between the observations, the

hour angles are:

T = 12i&amp;gt; T
and : _ T = i9h + T.

The case is now the same as before only with this dif

ference, that if A# is positive, the sun has the greater de

clination when the hour angle is --
r, hence the correction

(i must be taken with the opposite sign and we have in this

case :

X A f ta
&quot;g &amp;lt;f&amp;gt;

~ ~~
tailg ^

)720 \ sin T tang T /

fl ( 12 1 T 12 !l T .A=
rfon I ; tang (P

~
tang o \

720 V sin T tang T )

If we write instead of it:

u 12 h r / r r _\
x= foA

~
I

&quot; &quot; tans 9
P ~ tans ^

)720 T \ sin r tang r /

we can use the same tables as before
;
but besides, the quan

tity
-

r
must be tabulated, the argument being T or half

the interval between the observations. This quantity in Warn-
storfTs Htilfstafeln is denoted by /&quot;,

hence we have for the

correction in this case:

x =
ffj, [A tang cp

JB tang ].

In 1810 Sept. 17 and 18 v. Zach observed at Marseilles

equal altitudes of the sun. Half the interval of time was

10 h 55 n and as:

10h 55, &amp;lt;*

= H-2 14
16&quot;, y = 43 17 50&quot;

and: log^= 3.4453.

We find:

log A = 7.7305 log B = 7.7128,

log/ 1.0033,

ufA tang y = 142* . 33

fifB tang S = -+- 5 . 67,

hence for the correction:

x = 136s. 66.
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Note 1. The equation for equal altitudes is expressed in apparent solar

time. If now for these observations a clock adjusted to mean time is used,

we may assume the equation to be expressed in mean time without any
further correction. But if we use a chronometer adjusted to sidereal time,

we must multiply the correction by , a fraction whose logarithm is 0.0012.
obo

Note 2. If the hour angle r is so small, that we may use the arc in

stead of the sine and the tangent, the equation of equal altitudes becomes :

r= [tang y&amp;gt; tang $].

But as the unit of T in the numerator is not the same as in the denom

inator, being in the first case one hour, in the other the radius or unity,
we must multiply the second member of the equation by 206265 and divide

it by 15X3600. Thus we obtain:

x =
18^ . [tang ^ tang $\,

where now x is the equation of time for T= 0. But in this case the two
altitudes are only one, namely the greatest altitude, and hence x is the cor

rection, which must be applied to the time of the greatest altitude in order

to find the time of culmination.

The same expression was found already in No. 8 for the reduction of

circum-meridian altitudes.

14. If the altitudes of two heavenly bodies have been

observed as well as the interval of time between the two

observations, we can find the time and the latitude at the

same time. In this case we have the two equations:
sin // = sin

&amp;lt;f&amp;gt;

sin -+- cos
&amp;lt;p

cos cos t,

sin h sin cp sin -+ cos cp cos cos t .

If then u and u are the clock-times of the first and sec

ond observation, &u the error of the clock on sidereal time,
we have : *)

t U -f- (\ U
-

where AM has been taken the same for both observations,
because the rate of the clock must be known and hence we
can suppose one of the observations to be corrected on account

of it. Then is

*) If the sun is observed and a mean time clock is used, we have, de

noting the equation of time for both observations by w and w :

t= u -+- A u w,

hence : A= u u (w w).
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u it (a )
= A

a known quantity and we have I = t -f- L Hence the two

equations contain only the two unknown quantities cf and
,

which can be found by means of them. For this purpose
we express the three quantities

sin
(p,

cos
(f&amp;gt;

sin t and cos ip cos t

by the parallactic angle, since we have in the triangle bet

ween the pole, the zenith and the star:

sin
(p
= sin h sin -f- cos h cos cos p,

cos
(f

sin t= cos h sin p, (r/)

cos
9? cos t = sin A cos 8 cos h sin cos

;&amp;gt;.

Substituting these expressions in the equation for sin /*
,

we find:

sin h
1 =

[sin 8 sin 8 -+- cos $ cos $ cos 1] sin h

-h [cos $ sin sin 8 cos 8 cos 1] cos A cos p
cos $ sin 1 . cos A sin p.

But in the triangle between the two stars and the pole,

denoting the distance of the stars by /), and the angles at

the stars by s and *
,
we have:

cos D= sin 8 sin 8 -f- cos 8 cos 8 cos /

sin Z) cos 6-= cos c sin 8 sin 8 cos 8 cos A (/;)

sin D sin s= cos 8 sin A,

hence, if we substitute these expressions in the equation for

sin h :

sin // = cos D sin //. -+- sin D cos h cos (s -t- j),

. sin /* cos D sin //

hence cos
(. -+)= .

(c)sm Z) cos A,

Further if we substitute in

sin h = sin
cp sin 8 -+- cos y cos 8 cos (Y A)

the expressions for sin
r/-,

cos
cj

sin &amp;lt; and cos
&amp;lt;/

cos
,
which

we derive from the triangle between the pole, the zenith and

the second star, we easily find:

. . .. sin h cos D sin h
cos (s p )

= - -

, , (&amp;lt;/)

sin D cos h

After the angles p and p have thus been found by means

of the equations (6) and (c) or (d), the equations (a) or the

corresponding equations for sin f/, cos
(f

sin t and cos (f cos &amp;lt;

give finally cp
and or

&amp;lt;y?

and t .

The equations (6) give for D and 5 the sine and cosine,

the same is the case with the equations (a) for
(f

and
,

hence there can never be any doubt, in what quadrant these
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angles lie. But the equations (r?)
and (rf) give only the co

sine of s -+- p and s p
- however we have in the triangle

between the zenith and both stars:

sin D sin
(.&amp;lt;?

-f- p )
= cos // sin {A A)

and sin D sin
(.&amp;lt;? p )

= cos h sin (A
1

A),

hence we see that sin (s -4- p) and sin (5 p ) have always
the same sign as sin (A

1

-

A), so that also in this case there

can never be any doubt as to the quadrant, in which the

angles lie.

The formulae (a) and (6) can be made more conve

nient by introducing auxiliary angles, and the formula for

cos (s -|- p) can be transformed into another formula for

tang | (s-r-/?)
2 in the same way as in No. 4 of this section.

Thus we obtain the following system of equations:
sin 8 = sin/ sin F

cos 8 cos^= sin/cos F (e)

cos 8 sin I cos/,

cos D = sin /cos (F &amp;lt;?)

sin D cos .s = sin/ sin (F 8} (/)

sin D sin s= cos/,

cos . sin (S //)

where 5= (D -f- h -+- /* ),

sin g sin G= sin h

sin
&amp;lt;?

cos G= cos 7i cos p (//)

cos&amp;lt;7
= cos 7* ship,

sin^= sin g cos (G (?)

cos (p sin = cos g (?)

cos y cos t= sin # sin (6- S).

The Gaussian formulae may also be used in this case.

For first we have in the triangle between the pole and the

two stars, the sides being Z&amp;gt;,
90 d and 90&quot; &amp;lt;V and the

opposite angles A, s and s:

sin ^ Z&amp;gt; . sin ^ (* *)
= sin (# 5) cos j A

sin $ D . cosi (* s)
= cos4 ( -}- 8) sin U

cos ] .D . sin (s -}- .9)
= cos 4- (5 S) cos 4 *

cos ^ Z&amp;gt; . cos^ (.9 + s)
= sin ^ (5 -+-

&amp;lt;?)

sin 4- ^.

Then we have as before:

cos 5. sin (/&amp;lt; )
tang 4 (s-f-) 2 =- ? ,

D) sin(,S
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Finally we ha\7e in the triangle between the zenith, the

pole and the star:

sin (45 Ji&amp;lt;p)
sin ^ (A + t)

= sin ^ p cos ^ (h -4- S)

sin (45 7 &amp;lt;f)

cos (A -+- /)
= cos p sin 4 (A 5)

cos (45 %) sin 1, (4 = sin J ;&amp;gt;

sin J (A -f- c?)

cos (45 ^9?) cos \ (A t)
= cos .1 p cos

-3 (/&amp;lt; 8\

Iii case that the other triangle is used, we have similar

equations, in which A\ t\ p\ ti and &amp;lt;) occur.

Since we find by these formulae also the azimuth, we
have this advantage, that in case the observations have been

made with an altitude and azimuth instrument and the readings
of the azimuth circle have been taken at the same time, the

comparison of these readings with the computed values of

the azimuths gives the zero of the azimuth, which it may
be desirable to know for other observations.

Example. Westphal in 1822 Oct. 29 at Benisuef in Egypt
observed the following altitudes of the centre of the sun:

u = 20h 48 &quot; 4S h = 37 56 59&quot;. 6

u =23 7 17 7/=50 4055 .3,

where u is already corrected for the rate of the clock and

h and h are the true altitudes. The interval of time con

verted into apparent time gives /. = 2 h 18 in 28 s
. 66 = 34 37

9&quot;. 90 and the declination of the sun was for the two ob

servations :

^=10 10 50&quot;. 1 and S = 10 12 57&quot;. 8.

From these data we find by means of the Gaussian formulae:

D= 34 3 20&quot;. 27

s= 93 1258.26
s = 93 6 I . 93

Further: * -f-
;&amp;gt;

= 53 1541.26
. hence: p = 39 57 17 .00

and then :
(f
= 29 5 39 . 80

t= 35 24 59 . 23

.4 = 46 1952.17.

It is advisable to compute (f
and t also from the other

triangle as a verification of the computation, since the values

of
(fj

must be the same and t t = L
Now in order to see, what stars we must select so as

to find the best results by this method, we must resort to

the two differential equations:
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d/i = cos A
d&amp;lt;p

cos y sin A dt

dh = cos A dcp cos 9? sin A dt

where dt has been supposed to be the same in both equa
tions, because the difference of dt and dt may be trans

ferred to the error of the altitude. From these equations
we obtain, eliminating either dcp or dt:

cos A cos A
cos ydt = -rr-T--7\

dh ^~TT,

--- dh
sin (A

1

A} sin (A
1

A)
sin A sin A

dtp
= ---

. dh-\- -T-.

--^ .

am (A A) am (A
1

A)

Hence we see, that if the errors of observation shall

have no great influence on the values of
y&amp;gt;

and
,
we must

select the stars so that A* A is as nearly as possible =t= 90,
since, if this condition is fulfilled, we have :

cosydt= cosA dh cosAdh

dcp
= sin A dh -+- sin Adh .

Then we see, that if A 1

is == 90 and therefore A is 0,
the coefficient of dh in the first equation is 0, that of dh

equal to =t= 1
;
hence the accuracy of the time depends prin

cipally on the altitude taken near the prime vertical. In the

same way we find from the second equation, that the accu

racy of the latitude depends principally on the altitude taken

near the meridian. For the above example we have, since

4 = 115 :

dy&amp;gt;

= -+- 0.0308 dh 1.0215 dh
dt = -\- 0.1077 dh 0.0744 dh .

15. The problem can be greatly simplified, for instance,

by observing the same star twice. Then the declination being
the same and s = s, the formulae (A) of the preceding No.
are changed into:

sin TT D = cos sin 4 &amp;gt;l

cos
TJ
D sin s= cos 4 A

cos ^ D cos s = sin S sin 4 A.

By means of these we find D and 5, and then from the first

of the equation (#) and the equations (C) y and t and, if it

should be desirable, A.

In this case- we can solve the problem also in the fol

lowing way. We find from the formulae:

sin h = sin
y&amp;gt;

sin S -f- cos
cp cos S cos /

sin h = sin
(f sin S -+- cos

&amp;lt;p

cos 8 cos (t -+- /)

19
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by adding and subtracting them:

cos&amp;lt;?sin^/l.cos9Psin(J-f-^)
= cos.j(//-h/i )sin .j (It // )

sin
(f
sin S-\- cos S cos A k . cos(jpcos(t -f- ^A)= sin (h-^h ) cos^ (^ //).

Therefore if we put:
sin = cos 6 cos B

cos $ cos
&amp;lt;5

A= cos 6 sin 5 (/I)

cos S sin ^ A= sin 6,

the second of the equations (a) is changed into:

sin (A-MO cos 4 (A /&amp;lt; )

sin go cos 5 -h cos
y&amp;gt;

cos (/ -+- . A) sm /? =

and if we finally take:
sin

&amp;lt;f

= cos .Fcos G
(-B)

in
&amp;lt;f

= cos .Fcos G
cos y sin (t-\-\ %) = sin G
cos 9?

cos (^+ T^)

we obtain:

sin G= cos i (A-MO

cos(B F) =
sin b

cos 6

ti)
(CO

Fig. 8.

Therefore if we first compute the

equations (4), we find G and F by
means of the equations (C) and then

y and t from the equations (5). The

geometrical signification of the auxi

liary angles is easily discovered by
means of Fig. 8, where PQ is drawn

perpendicular to the great circle join

ing the two stars, and ZM is perpen
dicular to PQ. We then see, that

b=QS= D, B=PQ, F=PM and

G=ZM.
If we use the same data as in the preceding example,

paying no attention to the change of the declination and

taking d = - 10 12 57&quot;. 8, we find:

jB= 10041 23&quot;.l sin b= iUGGGOO cos 6 = 9.980534

sin G= 9.432863. cos G= 9.983445 F=41l 53&quot;.3

and hence t= 35 22 21&quot;.0 y = 29 5 42&quot;. 7.

In case that the two altitudes are equal, the formulae

(A) or (e) and
(/&quot;)

in No. 14 remain unchanged, but the. for

mulae (J5) are transformed into:

cos (h + 4 D)
tang J (s -4-y&amp;gt;)

2= tang
cos (A ^
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and then p being known, rf
and t can be computed by means

of the formulae (ft) and (i), or
(p,

t and A by means of the

formulae (0).

16. A similar problem, though not strictly belonging
to the class of problems we have under consideration at pres

ent, is the following: To find the time and the latitude and

at the same time the altitude and the azimuth of the stars

by the differences of their altitudes and azimuths and the

interval of time between the observations.

In this case we must compute as before the formulae (4)

in No. 14.

Then we have in the triangle between the zenith and

both stars, denoting the angles at the two stars by q and
&amp;lt;/ ,

the third angle being A A and the opposite sides 90 ft
,

90 h and D:

.
,

x , . x cos^(// h) cos(A A}
sin 4 (g -f- 7)

= r
~

cos ^ D
. i/i N

sin
TJT (h li) cos ^ (A

1

A)

By means of these equations we find
-J-
(h -f- ft ), thence ft

and ft and the angles &amp;lt;/

and
&amp;lt;/

. But since we have accord

ing to No. 14 q = s ~f- p and q = s ^ ,
we thus know p

and p ,
hence we can compute &amp;lt;/,

Z and ^4 by means of the

formulae (C) in No. 14 and as a verification of the compu
tation also

&amp;lt;-,

t and A .

In this case the differential equations are according to

No. 8 of the first section:

dh = cos A d(f) cos S sin p . d -

-+- cos S sin p d

dh = cos A d(f cos
si\i]&amp;gt;

. d cos sinpd

cos S cos i) A ]

-\-t cos S cos p t t

dA= sm A tang hdrp-\- d d
cos h 2 cos h 2

7 ., ., ,1., .
cosS cosn ,t -+-t cosS cosn t t

dA=BmA
tsuagtid&amp;lt;p+ 7 ,

d --h
.,,

d ,

cos 7 2 cos h 2

, t -\-t t
-

t
-i

t -\-t t
-

t , . . n
where

9
-h

9
and

9
----- have been put in place of

t and t occurring in the original formulae.

19*
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Subtracting the first equation from the second and the

third from the fourth, then eliminating first d* - and then

dy, and remembering that we have:

cos 8 sin p= cos 9?
sin A

cos 8 cos p= sin CP -f- cos 9? tang h cos A
cos A

we easily find:

Md&amp;lt;p
= [tang h cos J tang ti cos ^4

|
e/ (ti h) +- [sinA sin A

]
d (A

1

A)

-f-
-

-7 cosp sin -4 - -T cos p sin A\ d(t /),

LCOS h cos A J

Jfcos yrf
= [tang A sinA tang A sin A

] d(ti ti) [cosA cos A ] d(A A)

-f- [cos &amp;lt;f (tg A tg A ) sin
2
^ (-4 -+- -4) -h sin

&amp;lt;p
(cos J. cos A )] d(t 0-

where M= 2 [tg A + tg A ) sin
2
| (A

1

A).

We see from this, that it is necessary to select stars for

which the differences of the altitudes and the azimuths are

great, in order that M be as great as possible. If (A A)
= 90, even the coefficient of d (ti Ji) is less than

\.

v. Camphausen has proposed to observe the stars at the

time, when their altitude is equal to their declination, be

cause then the triangle between the zenith, the pole and the

star is an isosceles triangle and we have =180 A and:

cotg 8 cos t = cotg 8 cos t = tg (45 4 9?)

cotg 8 cosA= cotg 8 cos A = tg (45 j y&amp;gt;\

by means of which we find:

or

From these formulae we obtain t -f- t or A -+- -4 and y.

But since the altitudes are hardly ever taken exactly at the

moment, when they are equal to the declination, the observed

quantities t t and A A must first be reduced to that

moment. (Compare Encke, Ueber die Erweiterung des Dou-

wes schen Problems in the Berlin Jahrbuch for 1859.)

Example. In 1856 March 30 the following differences

of the altitudes and the azimuths of i] Ursae majoris and a

Aurigae were observed at Cologne.
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ti h = 410 46&quot;.0

A A= 226 28 9&quot;.9

The interval of time between the observations, expressed in sidereal time,

was QMS &quot; 8s. 70.

The apparent places of the stars were on that day:

rj
Ursae majoris a 13 h 41m 54 s .53 8= -+- 50 1 45&quot;. 9

aAurigae = 56 1 . 69 # =+ 4551 1 .7.

Hence we get I = 133&quot; 30 23&quot;. 1, and we obtain first by
means of the formulae (A) in No. 14:

., = + 31 22 33&quot;. 18

., ==+ 28 41 50&quot;. 20 D = 76 14&quot;. 79.

Then we find from the formulae (J?) q = 28 40 53&quot;. 44,

q = 31 21 32&quot;. 80, and since q = s p , q = s -+- p, we
find p = 62&quot; 44 5&quot;. 98, p = + 57 22 43&quot;. 64. Since we
find | (#4- A) = 47&quot; 56 40&quot;. 61, and hence A= 50 2 3&quot;. 61,

we get by means of the equations (C) in No. 14:
cp
= 50&quot;

55 55&quot;. 57, /= 295 2 56&quot; .70, A = 244 57 48&quot;. 50.

If we compute also the differential equations we find, if

we express all errors in seconds of arc:

dtp
= 0.0342 d

(/&amp;gt;.
A) 0.4892 d(A A] + 0.2438 d(t t)

d~p= 0.8621 rf (A A) -f- 0.0244 d (A
1

A) 0.0188 d (t t).

17. The method of finding the latitude and the time

by two altitudes it often used at sea. But sailors do not

solve the problem in the direct way which was shown before,

because the computation is too complicate, but they make
use of an indirect method which wras proposed by Douwes,
a Dutch seaman.

Since the latitude is always approximately known from

the log-book, they first find an approximate time by the alti

tude most distant from the meridian, and with this they find

the latitude by the altitude taken near the meridian. Then

they repeat with this value of the latitude the computation
for finding the time by the first altitude.

Supposing again that the same heavenly body has been

observed twice, we have:

sin h sin h = cos
&amp;lt;p

cos S [cos t cos (t -f- )]

= 2 cos ^ cos S sin (t -+- \K) sin A,

hence :

2 sin (t -+- % A) = sec
y&amp;gt;

sec 8 cosec -}
A [sin h sin h

]
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or, if we write the formula logarithmically:

log . 2 sin (t -f- \ A j
= log sec y H- logsec ^-h log [sin h sin ti\+ logeosec 5 A. M)

Since an approximate value of
(p

is known, we find from

this equation t-\-\ A, and hence also
,
and then we find a more

correct latitude by the altitude taken near the meridian by
means of the formula:

cos (90 8) = sin /t -f- cos
&amp;lt;p

cos 8 . 2 sin
-5- (t -f- A )

2
. (J3)

If the result differs much from the first value of the

latitude, the formulae (A) and (#) must be computed a second

time with the new value of
(f.

Douwes has constructed tables for simplifying this com

putation, which have been published in the ,,Tables requisite

to be used with the nautical ephemeris for finding the lati

tude and longitude at sea&quot; and in all works on navigation.
One table with the heading ,,log. half elapsed time&quot; gives the

value of log. cosec f A, the argument being the hour angle ex

pressed in time. Another table with the heading ^log. middle

time&quot; gives the value of log 2 sin (t -+- 1 A), and a third table

with the heading rlog. rising time&quot; gives that of log 2 sin |
2

.

The quantity log. sec
f/

sec d is called log. ratio and we
have therefore according to the equation (/I):

Log. middle time = Log. ratio -f- Log (sin k sin h )

-f- Log half elapsed time.

By means of the table for middle time we find from

this logarithm immediately t. Then we take from the tables

log. rising time for the hour angle t -f- /
,

subtract from

it log. ratio and add the number corresponding to it to the

sine of the greater one of the altitudes. Thus we obtain the

sine of the meridian altitude and hence also the latitude.

If we cannot use these tables, we compute:
. ,, cos ^ (ft + h ) sin (h h )

cos
&amp;lt;p

cos sin I A

and:
sin

cos ((f 2V)= ,M
where: sin = J/ sin JV

cos 8 cos t = il/cos 2V.

If we compute the example given in No. 14 according
to Douwes s method, we find:

p= 29
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log ratio 0.06512

log (sin A sin k ) 9 . 20049*

log half elapsed time . 52645

log middle time 9 . 79206,,

log rising time 5 . 90340

log ratio . 06512

-f- . 00007

sin ti -f- . 77364

cos (y &amp;lt;?)

= 9 . 88858

&amp;lt;P

S= 39 18 .7

0,= 29 5.7.

In case that the observations are made at sea, the two

altitudes are taken at two different places on account of the

motion of the ship during the interval of time between the

observations. But since the velocity of the motion is known

from the log and the direction of the course from the needle,

it is very easy to reduce the altitudes to the same place of

observation.

Fig. . The ship at the time of the first ob-

ser^ation shall be in A (Fig. 9) and at the

time of the second in B. If we imagine

then a straight line drawn from the centreO
of the earth to the heavenly body, which

intersects the surface of the earth in S
,

then the side B S in the triangle ABS
will be the zenith distance taken at the place B, and since

B A is known, we could find, if the angle S BA were known,
the side A S

,
that is, the zenith distance which would have been

taken at the place A. Therefore at the time of the second

observation the azimuth of the object, that is, the angle S B C
must be observed, and since the angle CBA, which the di

rection of the course of the ship makes with the meridian,

is known, the angle S BA is known also. Denoting this

angle by and the distance between the two places A and

B by A? we have:

sin h == sin h cos A 4- sin A cos h cos
,

where A is the reduced altitude. If we write instead of this :

sin A = sin h -+- sin A cos h cos a 2 sin ^ A
2
sin A,
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and take A instead of sin A, we obtain by means of the for

mula (20) of the introduction:

// = h H- A cos
.j A

2
tang /&amp;lt;,

where the last term can in most cases be neglected.

18. If three altitudes of the same star have been ob

served, we have the three equations:

sin h = sin
y&amp;gt;

sin 8 -+- cos
&amp;lt;p

cos cos t

sin h = sin
tp

sin $ -h cos
y&amp;gt;

cos $ cos (t -f- / )

sin A&quot;= sin 90 sin 8 -h cos
90 cos 3 cos

(&amp;lt;
-f- A ),

from which we can find
&amp;lt;/?,

t and d. For if we introduce

the following auxiliary quantities:

X= COS
(f COS COS

y = cos gp cos S sin ?

z= sin
(f sin

&amp;lt;?,

those three formulae are transformed into :

sin li = z -f- x

sin h = z -+- x cos A y sin A

sin h&quot; z -\- x cos 1 y sin A
,

from which we can obtain the three unknown quantities x,

y and z in the usual way. But when these are known, we
find

(f
and t by the equations:

y
tang t=

x
sin (f sin 3= z

cos
&amp;lt;p

cos $= J/ar
2 +

&amp;lt;y
2

.

This method -would be one of the most convenient and

useful, since no further data are required for computing the

quantities sought*). But it is not practical, since the errors of

observation have a very great effect on the unknown quan
tities. But if we do not consider ci as constant, that is, if

we observe three different stars, whose declinations are known,
at equal altitudes, the problem is at once very elegant and

useful.

19. In this case the three equations are:

sin h = sin
&amp;lt;p

sin 8 -f- cos
95 cos S cos t

sin h = sin
cp

sin -\- cos y cos cos (t 4- A) (a)

sin h= sin y sin S&quot;-+- cos
&amp;lt;j&amp;gt;

cos $&quot;cos (t -f- A ),

where A = (u
1

it) (a a)

and A =(M&quot;M) (&quot; ).

*) Since three altitudes of the same star have been taken, I and A are

not dependent on the right ascension.
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If we now introduce in the two first equations \ (o -+-S)

-+.
i

(&amp;lt;y

_
) instead of

&amp;lt;&amp;gt;*,

and f (3 -+-
&amp;lt;V) J (&amp;lt;?

5 ) instead

of t)
,
and subtract the second equation from the first, we get:

= 2 sin T sin | (5 8 ) cos (5 4- 8&quot;) 4- cos
y&amp;gt;

cos t [cos ^ (5 4- 5 ) cos (5 5 )

- sin | (5H- 5 ) sin 4 (5 5 )]

- cos y cos
(&amp;lt;

-}- A) [cos (5+ 5 ) cos 4- (8 5 ) 4- sin \ (8 4- 5
) sin .1 (8 5 )J

or:

= sin
&amp;lt;f

sin 5 (t? 5 ) cos | (5 4- 5 )

4- cos y cos (5 H- 5 ) cos J[ ( 5 ) sin ^ ^ sin
(i! 4- \ A)

- cos
&amp;lt;p

sin ^ (^ 4- 8 ) sin i (55 ) cos 4 I cos (i 4- \ I}.

From this we find:

tang &amp;lt;p

= sin
,]
A . sin (i! 4- | A) cotang ^ (5 5 )

4- cos ^ A . cos (t 4- 5 A) tang .1 (5 4- ).

Introducing now the auxiliary quantities A and B\ given

by the formulae:

sin A . cotang | (5 5 )
= .4 sin B

cos 4- A. tang ^(54- 5 )
= .4 cos Z? (^t)

JB&amp;gt; 4- ^A= C
,

we obtain:

From the first and third of the equations (a) we find

in the same way similar equations:

sin | A cotang \ (5 5&quot;)
= A&quot; sin

&quot;

\

cos | A tang (5 4- 5&quot;)
= ^&quot; cos 5&quot;

(&amp;lt;7)

fi&quot; 4-^ =
C&quot;,

tang 99
= J&quot; cos

(&amp;lt;
4- C&quot;). (Z&amp;gt;)

Furthermore we find from the two formulae (B) and
(Z&amp;gt;)

:

^4 cos ( 4- CY

)
=

.4&quot; cos
(&amp;lt;
4- C&quot;).

In order to find t from this equation, we will write

it in this way:
A cos [t 4- H-\- C H] = ^4&quot; cos

|&amp;gt;
4- T4- C&quot; //J,

where # is an arbitrary angle, and from this we easily get:

tang(/ 4- 7/)-^ ^^ ll^)
~ A &quot;

* (C&quot;-V)

A sin (C - ff)-A r
sln~(C

f -f^
For H we can substitute such a value as gives the for

mula the most convenient form, for instance 0, C or C&quot;.

But we obtain the most elegant form, if we take:

H= | (C&quot; 4- C&quot;)

for then we have:

tang [t 4- 4
(C&quot; 4- C&quot;)]

= ^-r^C cotang * (C&quot; C&quot;),~
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Introducing now an auxiliary angle , given by the

equation :

we find:

J-
hence :

tang [t+ t (C&quot;+ 6 &quot;)]

= tang (45
-

g) cotang | (C C&quot;). (F)

We find therefore first by means of the equations (^4)

and (C) the values of the auxiliary quantities A, /?
,
C and

A\ /T, C&quot;;
then we obtain by means of the equations (E)

and (F), and finally (/ by either of the equations (J5) or
(/&amp;gt;).

It is not necessary to know the altitude itself, in order to

find
(f

and
f,

but if we substitute their values in the origi

nal equations (a), we find the value of /i; hence, if the alti

tude itself is observed, we can obtain the error of the in

strument.

In order to see, how the three stars should be selected

so as to give the most accurate result, we must consider

the differential equations. Since the three altitudes are equal,

we can assume also dh to be the same for the three altitu

des, uniting the errors, which may have been committed in

taking the altitudes, with those of the times of observation.

Now since we have:

t == u -f- A 5

the error dt will we composed of two errors, first of the

error 6/(A0, thas is, that of the error of the clock, which

may be assumed to be the same for the three observations,

since we suppose the rate of the clock to be known, and

then of the error of the time of observation du which will

be different for the three observations. Hence the three dif

ferential equations are:

dh = cos Ady cos
&amp;lt;p

sin A du cos (f
sin A c?(A M)

dh= cos A
d&amp;lt;p

cos (f sin A du cos
&amp;lt;p

sin A d(&u)

dh = cos
A&quot;dy

cos
&amp;lt;p

sin A&quot;du&quot; cos y sin A&quot;d(&tt).

If we subtract the first two equations from each other,

we find by a simple reduction:
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A n . A-\rA ^4 + ^4 cos OP sin A= 2 sm
9

~-

dtp 2 cos vos
(f&amp;gt;d(t\n) .,

cos OP sin A

sin
9

sin
&

and in the same way from the first and third equation:

-, . A-}- A&quot; A-}- A&quot;
A

. cos OP sin A
,U=2sm -

d&amp;lt;f&amp;gt;

2 cos
cos&amp;lt;jprt(/y) -r^-du

sin ~

From these two equations we obtain, eliminating first

rf (A and then dy:
A +A&quot; A+ A&quot;

cos (f sin yi . cos -- cos gp sm A cos

2 sin - sin
z z 22

cos p sin A&quot; cos

.
^&quot; A

. 4&quot;-

2 sm sm

and:

sm ^1 . sm sin .4 sin
2

. A A.A A&quot;

2 sin sm

sm ^ sin

,

sm sm --

We see from this, that the stars must be selected so,
that the differences of the azimuths of any two of them be
come as great as possible, and hence as nearly as possible equal
to 120, because in this case the denominators of the diffe

rential coefficients are as great as possible*).

Example. In 1822 Oct. 5 Dr. Westphal observed at

Cairo the following three stars at equal altitudes:

a Ursae minoris at 8 h 28 in 17 s

Herculis 31 21 West of the Meridian

_ Arietis 47 30 East of the Meridian.

*) This solution of the problem was given by Gauss in Zach s Monat-
liche Correspondenz Band XVIII pag. 277.
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The places of the stars were on that day:
a Ursae minoris Qh 58m 14* . 10 + 88 21 54&quot;. 3

Herculis 17 6 34 .26 14 36 2.0
Arietis 1 57 14 . 00 22 37 22 . 7.

Now we have:

M _ M= H-3m 4s -o
&quot;

M= -f. 19m 13s. o

or expressed in sidereal time:

M _ M= -l- Oh 3m 4s. 50 H-()h 19 16*. 16

= 7 51 39 .84 &quot; = -hO 58 59 .90

A = 7h 54m 44s . 34 ;/ _
QI&amp;gt; 39 43 . 74

= 118 41 5&quot;. 10 = 9055 56&quot;. 10.

Then we have:

(# )
=

36&quot; 52 56&quot;. 15
i (8+ 8 )

= 51 28 58 .15
i

(S 8&quot;)
= 32 52 15.80

( + &quot;)

= 55 29 38.50.

and from this we obtain:

log A = 0. 1183684 log 4&quot;= 0.1629829
B = 60 48 11&quot;. 92 B&quot; = 5 16 52&quot;. 22

C =120 844.47 C&quot; =10 1450.27

.J (C&quot; H- C&quot;)
= 54 56^ 57&quot;. 10

i(C&quot; C&quot; )= 65 11 47 .37

g== 47 56 16 .08

t= 56 18 28&quot;. 09

= 3h 45 13s. 87

t + C = 63 50 16&quot;. 38

&amp;lt;H-C&quot;
= 66 33 18 .36

and the formulae (/?) and (D) give the same value of y :

y= 30 4 23&quot;. 72.

From we find the sidereal time:

&amp;lt;9
= 21h 13m o. 23,

and since the sidereal time at mean noon was 12 h 54m 2 s
. 04,

we find the mean time 8 h 17m 36 8

.44, hence the error of the

chronometer :

A M= 10 40 S .56.

Computing h from one of the three equations (a) we get:

h= 30 58 14&quot;. 44,

and for the other two hour angles we find:

= 62 22 37&quot;. 01

*= 66 14 24 . 19.

We then are able to compute the three azimuths:
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A ==181 35 . 2

A = 89 33 .2

.4&quot;= 279 50 .4;

and finally the three differential equations:

d&amp;lt;f=
. 329 da 5 . 739 du G . 068 J&quot;,

rf(An) = 0.0018 du -f . 468 du . 396 du&quot;,

where dy is expressed in seconds of arc, whilst t/(/\w) and

du, du\ du&quot; are expressed in seconds of time.

20. Cagnoli has given in his Trigonometry another so

lution, not of the problem we have here under consideration,
but of a similar one. His formulae can be immediately ap
plied to this case, and if it is required, to find the altitude

itself besides the latitude and

the time, they are even a little

more convenient.

Let S, S and S&quot; (Fig. 10)
be the three stars which are

observed. In the triangle
between the zenith, the pole
and the star we have then

&quot;s&quot;

according to Gauss s or Na
pier s formulae, denoting the

parallactic angle by pi

and:

tang % (&amp;lt;JP

-h h) = V cotang (45

tang J (y&amp;gt;
h) = S

]

-?--
tang (45 4 8)

sin
-2 ( t -f- jJ

sin- (tp)
cotang (45

sin ] ( t H-
/&amp;gt;)

But in the triangles PSS ,
PS S&quot; and PSS&quot; we have also

according to Napier s formulae, putting for the sake of brevity
A =1[PS&quot;S PS

S&quot;]

A = [PS&quot;S PSS&quot;]

A&quot;=Ji[PS S PSS ]:

tang A =

cos
(B)
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where /, and // have the same signification as before. Now
since we have:

= p

p -+-PS S&quot;=PS&quot;S
p&quot;

we easily find, that: P = A -i-A&quot;A

p = A 4- A&quot; A (C)

p&quot;=
A 4- A A&quot;.

But we also have:

sin t : sin p = cos h : cos cp

sin U4-A) : sinp = cos h : cos
9?,

hence :

sin t : sin U-f-A) = sin 79 :

sin|&amp;gt;

or:

sin * 4- sin (t -+- A) __ sin [A
1

4- A&quot; A] -+ sin [A H- A&quot; A
]

Tin&quot;* sin (t +Tf
~~

sin [A -f- A&quot; A] sin [A -h A&quot; A
]

From this follows:

tang [t H- 4 A] cotang ^ A= tang .4&quot; cotang (A A )

or substituting for tang A&quot; its value taken from the equa

tions (): sin(S 8)

tang [* H- 4 A]
=

! cotang U - A ). , (Z

Therefore we first find from the equations (#) the values

of A, yl and
A&quot;,

then we find p and by means of the equa
tions (C) and (D), and then

&amp;lt;/

and h by means of the equa
tions (A). An inconvenience connected with these formulae

is the doubt in which we are left in regard to the quadrant
in which the several angles lie, all being found by tangents.

However it is indifferent whether we take the angles 180

wrong, only we must then take 180 -+- 1 instead of f, if we
should find for

(p
and h such values

,
that cos

&amp;lt;f

and sin h

have oppositive signs. Likewise if we find for
ff

and h values

greater than 90&quot; we must take the supplement to 180 or to

the nearest multiple of 180. The latitude is north or south,

if sin
ff

and sin h have either the same sign or opposite signs.

If we compute the example given in No. 19 by means

of these formulae, we have:

,U= 59 20 32&quot;. 55

; = 4 57 58 .05

^ (8&quot; )
= 4 O

r
40&quot;. 35 i (8&quot; S)= 32 52 15

.
. 80

;
] ( _) = _ 36 52 56&quot;. 15

35 (&quot;-}-)= 55^9 38 .50

= 51 2858 .15,
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and from this we find:

4= 2 2 1&quot;.33, ^ =84 49 4&quot;. 07, A&quot;= 29 44 16&quot;. 52

A ^ ==86 51 5&quot;. 40

,f-l-^A= 3 2 4 .47

t= 56 1828 .08.

Then we find y and h from one of the triangles between

the pole, the zenith and one of the stars, and since in the

triangle formed by the first star small angles occur, we choose

the triangle formed by the second star, using the formulae:

tang i (p-M) = *

I y*fy tang (45 -h { )

Now we have:

* = &amp;lt; + / = 62 22 37&quot;. 02

y= ^t -+. ^&quot; A = 243 24 38&quot;. 08,

therefore we find:

y,= 30 4 23&quot;. 73

A= 149 1 45 .58

or taking for h the supplement to 180:
h= 30 58 14 . 42,

which values almost entirely agree with those found in the

preceding No.

21. We can also find Cagrioli s formulae by an analyt
ical method. According to the fundamental formulae of spher
ical trigonometry wre have for each of the three stars the

following three equations:

sin h = sin cp sin S -j- cos
cp cos cos t \

cos h sin p = cos
y&amp;gt;

sin t (a)

cos A cos;? sin
rp cos cos

y&amp;gt;

sin S cos t

sin h= sin
&amp;lt;f

sin # -+- cos
90 cos $ cos(i-|-/i) i

cos h sinp = cosy sin (t -\r V)
|

(6)

cos A cos
/;
= sin 9? cos S cos y sin cos

sin A = sin
cp sin ^&quot;-4- cos

&amp;lt;p

cosS&quot; c

cos A sin// cosy sin
(&amp;lt;
+ A ) (c)

cos A cos// = sin
gp cos J&quot; cos 9? sin

&quot;

cos (*H-A )

*

If we subtract the first of the equations (6) from the

first of the equations (a) and introduce J (*&amp;gt;
-f- #) -f- (d &amp;lt;V)

instead of #, and i( (&amp;gt;

-4&amp;gt;^) _J. ( fy &amp;lt;) ) instead of &amp;lt;)

,
we find

the equation (rr) in No. 19. By a similar process we deduce

from the third of the equations (a) and (6):
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cos h sin ^ (/&amp;gt; -+-/&amp;gt;)
sin

-5- (// p)
= sin

&amp;lt;f

sin \ (8 -\-8) sin I (8 8)

cos
&amp;lt;p

sin ^ (&amp;lt;? H-&amp;lt;?)
cos 4- (8 8) sin (*-H A) sin /

-h cosy cos ^(&amp;lt;? -H?) sin
K&amp;lt;? &amp;lt;?) cos(H-^)cos4-/,

and if we eliminate sin
(f

in this equation by means of the

equation (), multiplying the first by cos
|(&amp;lt;) -|-r&amp;gt;),

the latter

by smK/V-hcT), we obtain:

cos h cos 4 ($ +#) sin ^ (p -fp) sin 4(p /)= cos
y&amp;gt;

sin \ (8 S) cos (H-^ A) cos ^ L (o?)

Now if we subtract the second equations (a) and (6),

we find:

cos h cos -j (p -\-p) sin 4 (// /&amp;gt;)

= cos
cp

cos (^ -+- \ /I) sin 5 A,

and hence:

1 X I \ SI 11 K^ - ^) Alt

tang J (/&amp;gt; -h/&amp;gt;)

= l/ cotang ^ / = tang ^ .

We can find similar formulae by combining the cor

responding equations (a) and (c) and (6) and (c), which we

can write down immediately on account of their symmetrical
form :

N siiU (&quot;&amp;lt;?)

+p) = T cotang 4 / = tang A

sin
(&amp;lt;?&quot; S&quot;)

and tang 5 (/; +;? ;=
,&quot;

--- --

cotang (/ /)=
COS^ (.O ~T&quot;O j

If we add finally the second equations (a) and (6), we
find :

cos h sin \ (p -^-p} cos
-^ (/) p)= cos 9? sin (2 -h ^ A) cos ^ A,

and from this in connection with (d) we obtain:

sin ^ (a
1

a)
tang (&amp;lt;

H- 4- A) =
g r^ _{_)

cotang f (p p),

where ^ (/ p)= A A .

When thus p and t for the first star are known, we can

compute cf
and h by means of the formulae found before,

which were derived by Napier s formulae:

tang * dp H- A)=^r|^ cotang (45
-

* &amp;lt;?)

tang *(?-*)= tan^ &amp;lt;

45 -
^ ^
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IV. METHODS OF FINDING THE LATITUDE AND THE TIME

BY AZIMUTHS.

22. If we observe the clock -time, when a star, whose

place is known, has a certain azimuth, we can find the error

of the clock, if the latitude is known, because we can com

pute the hour angle of the star from its declination, its azi

muth and the latitude. If we take the observation, when the

star is on the meridian, it is not necessary to know the de

clination nor the latitude
;

at the same time, the change of the

azimuth being at its maximum, the observation can be made

with greater accuracy than at other times.

If we differentiate the equation:

cotang A sin t= cos (p tang H- sin
&amp;lt;f&amp;gt;

cos t,

we obtain according to the third formula (11) in No. 9 of

the introduction:

cos hdA= sin A sin hdtp + cos cos p . dt.

If the star is on the meridian, we have:

sin A = 0, cos p = 1

and:
A = 90 y-f-

at least if the star is south of the zenith, hence we obtain:

dt= mr-*) dA .

COS

We see therefore, that in order to find the time by the

observation of stars on the meridian, we must select stars

which culminate near the zenith, because there an error of

the azimuth has no influence upon the time.

If a be the right ascension of the star and u the clock-

time of observation, we have the error of the clock equal to

a
^&amp;lt;,

if the clock is a sidereal clock. But if a mean -time

clock is used, we must convert the sidereal time of the cul

mination of the star, that is, its right ascension into mean
time. If we denote this by m, the error of the clock is

equal to m u.

For stars at some distance from the zenith the accuracy
of the determination of the time depends upon the accuracy
of the azimuth or upon the deviation of the instrument from

the meridian. If this error is small, we can easily determine

&quot;20
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it by observing two stars, one of which culminates near the

zenith the other near the horizon, and then we can free the

observation from that error. For ifdA be the deviation from

the meridian, the hour angles (*) a and & a which the

stars have at the times of the observations are also small

and equal to:

si 11(9^ &amp;lt;f)

* A-4
cos o

-,
sin (y S )and: -

s , A A.
COS

Hence, since = u-\-^u^ we have the following two

equations :

sin 0/5 8)
a = u -+- A&quot; ^* &A

cos o

and: = + ,i
- **=&amp;gt; & A,

COS

from which we can find both &u and &A. If the instru

ment is so constructed that we can see stars north of the

zenith, we find A A still more accurately if we select two stars,

one of which is near the equator, the other near the pole,

because in this case the coefficient of &A in one of the above

equations is very large and besides has the opposite sign *).

Example. At the observatory at Bilk the following trans

its were observed with the transit-instrument, before it was

well adjusted:
a Aurig-ae 5h 6 &quot; 27 s

. 72

ft Orionis 5 8 12 . 71.

Since the right ascensions of the stars were :

a Aurigae 5 h 5 ra 33 s .25 4-45 50 . 3

ft Orionis 57 17 .33 - 8 23 . 1

and the latitude is 51 12 . 5, we have the two equations:
_ 545 . 47 = A M _ 0.13433 A^
-55 . 38= A&quot; 0.87178 &A,

from which we find:

A u = 54 s
. 30

and :

*) It is assumed here, that the instrument be so adjusted, that the line

of collimation describes a vertical circle. If this is not the case, the obser

vations must be corrected according to the formulae in No. 22 of the seventh

section.
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23. The time can also be found by a very simple

method, proposed by Olbers, namely by observing the time,

when any fixed star disappears behind a vertical terrestrial

object. This of course must be a high one and at consid

erable distance from the observer so that it is distinctly seen

in a telescope whose focus is adjusted for objects at an in

finite distance. The telescope used for these observations

must always be placed exactly in the same position, and a

low power ought to be chosen.

Now if for a certain day the sidereal time of the dis

appearance of the star be known by other methods, we find

by the observation on any other day immediately the error

of the sidereal clock, because the star disappears every day

exactly at the same sidereal time, as long as it does not change
its place. But if a mean -time clock is used for these ob

servations, the acceleration of the fixed stars must be taken

into account, since the star disappears earlier every day by
O h 3m 55 s .909 of mean time.

If the right ascension of the star changes, the time of

the disappearance of the star is changed by the same quan

tity, because the star is always observed at the same azimuth

and hence at the same hour angle. But if the declination

changes, the hour angle of the star, corresponding to this

azimuth, is changed and we have according to the differential

formulae in No. 8 of the first section, since dA as well as

d(p are in this case equal to zero:

dS= cos pdh
cos 8dt = sin pdh,

hence :

dS. tang/?
at

, &amp;gt;

COS

where p denotes the parallactic angle.

Therefore if the change of the star s right ascension and

declination is A and A (5, the change of the sidereal time,
at which the star disappears, is:

,
A A# tang p
15 15 cos&amp;lt;f

Olbers had found from other observations, that in 1800

Sept. 6 the star Coronae disappeared behind the vertical

wall of a distant spire, whose azimuth was 64 56 21&quot;. 4, at

20*
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IP 23m 18^.3 mean time, equal to 22 h 26m 21 s
. 78 sidereal time.

On Sept. 12 he observed the time of the disappearance of

the star 10&quot;49
m 21 s

. 0. Now since 6 x 3 in 55 s .909 is equal to

23m 35 s

.4, the star ought to have disappeared at 10 h 59 &quot; 42 s
. 9

mean time, hence the error of the clock on mean time was

equal to -+- 10m 21 s
. 9.

In 1801 Sept. 6 was:

Aa=5-H42&quot;.0

and :

A&amp;lt;?= 13&quot;. 2,

and since we have:

^ = 37 31 -

and :

^= -t-2G 41
,

we find:

. _A co7- 1 &quot;J

hence the complete correction is -+- 53&quot;. 35 or 3 s
. 56. There

fore in 1801 Sept. 6 the star d Coronae disappeared at 22 h 26m

25 s
. 34 sidereal time*).

24. If we know the time, we can find the latitude by

observing an azimuth of a star, whose place is known, since

we have:

cotang A sin t= cos (p tang -f- sin
cp

cos t.

Differentiating this equation we find:

cos 8 cos p sin p ~
sin Adtp= cotang lidA -\ .

- dt -f- -7 7
do.

sin h sm h

Hence in order to find the latitude by an azimuth as

accurately as possible, we must observe the star near the

prime vertical
,
because then sin A is at a maximum. Be

sides we must select a star which passes near the zenith of

the place, since then the coefficients of dA and dt are very

small, as we have:

cos S cos p = sin cp cos h -h cos y sin h cos A.

Therefore we see that errors of the azimuth and the time

have then no influence
,

whilst an error of the assumed de

clination of the star produces the same error of the latitude,

since we have then sin p = 1 .

If we observe only one star, we must observe the azi-

*) v. Zach, Monatliche Correspondent Band III. pag. 124.
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muth itself besides the time. But if we suppose, that two

stars have been observed, we have the two equations:

cotang A sin t = cos y tang -f- sin
&amp;lt;p

cos t .

cotang A sin t = cos
&amp;lt;p tang 8 -{~ sin (f cos /, .

Multiplying the first equation by sin t\ the second by
sin

,
we find :

. sin (A A) . .

sin t sin t
- -

.,
= cos y tang d sin t tang o sin t

J

sm A sin A
-h sin (f sin (t

1

*)

or as:

cos 8 sin t= cos A sin A,
also:

cos A cos h sin (^ A) = cos 9? [cos 8 sin 5 sin sin 8 cos 5 sin t
]

-h sin 9? sin (t t) cos 8 cos 8 . (&)

We will introduce now the following auxiliary quantities:

sin (8 -+- 8) sin % (t t~)
= ?nsir\M

sin (8 8) cos 5- (&amp;lt; t}
= m cos M

If we multiply the first of these equations by eosJ(f -Hf),

the other by sin|(f -M) and subtract the second equation
from the first, we get:

m sin [^ (t -\-t) M] = sin 8 cos 8 sin t cos 8 sin 8 sin t .

But if we multiply the first equation by cos | (* f),

the second by sin | ( f), and subtract the first equation
from the second, we get:

m sin [| &amp;lt;) IT] = sin 8 cos # sin ( r).

Hence the equation (6) is transformed into the following:
cos A cos k sin (^4

;

A) = m cos
90

sin [\ (&amp;lt;
+ ifef]

m sin y sin [^ (i t) M] cotang 8.

If we assume now, that the two stars were observed

either at the same azimuth or at two azimuths, whose dif

ference is 180, we have in both cases sin (A A) = and

hence we find:

sin [jfr -K) Jf]
tang ? = tang

J-,-^^.
(B]

Therefore in this case it is not necessary to know the

azimuth itself, but we find the latitude by the times of ob

servation and by the declination of the star by means of the

formulae (A) and (5).

If the same star was observed both times, the formulae

become still more simple. For since we have in this case

^=90&quot; according to the second formula (^4), we find:
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* cos j (Y-M)
tang f= tang .

_
R?
_. . (C)

For the general case, that two stars have been observed

at two different azimuths, the differential equations are:

cos h dA = sin p d H- cos 8 cos p dt sin h sin A
d&amp;lt;p

cos h dA smp dd -+- cos S cos p d t sin h sm A dy-.

If we introduce here also the difference of the azimuths

and therefore multiply the first equation by cos ft
,
the other

by cos
ft,

and subtract them, we get :

cos h cos h d(A A) = cos h cos d cos pdt-+- cos h cos S cos p dt

[sin h cos h sin A sin h cos h sin ^1] dy&amp;gt;

-\- cos h sin p dS cos h sin pd8.

Now since dt= clu -{- d (&ii) and c?J = du -+- r/ (A M),

where du and C/M are the errors of observation and d(&u)
that of the error of the clock, we find, if we substitute these

values in place of dt and dt and take at the same time

4 =180 4- 4*):

sin
Ad&amp;lt;p cosy cosAd(&u) = -7-7,, ;&amp;gt;. [d(A ^4) sin cpd(u u)j

sin. \/i r~ fi)

cos (p cosA sin h cos h cos (p cos A sin h cos h
,

-^^nr~ ~ii^q^r~
sin /? cos A

,
sin p cos A _~

sin (A H- A)

Hence we see again that it is best to make the obser

vations on the prime vertical. For then the coefficient of

dcp is at a maximum and those of the errors du, du 1

and

d(u) are equal to zero; and only the difference of the two

errors of observation, the errors of the declination and the

quantity, by which the difference of the two azimuths was

greater or less than 180&quot;, will have any effect upon the re

sult. In case that the same star was observed on the prime
vertical in the east and west, we have ft= ft and sin /? == sin/?,

hence :

h [d(A A) siny&amp;gt;d(u M)] -H , d8t

sin fi

*) In order to find the equation given above, we must also substitute

for cos S cos p and cos 8 cos p the following expressions :

cos d cosp = sin tp cos h H- cosy sin h cos A
cos cosp

= sin
y&amp;gt;

cosh cosy sin h cos A,
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and since according to No. 26 of the first section:

we have:

sin cos fpsm h=
. and sin p =sm fp cos o

dy&amp;gt;
\ cotang h [d(A A) sin

&amp;lt;p
d(u 11) } -f- . ^ d &

We see again from this equation, that it is best to ob

serve stars, which pass near the zenith, because then cotang h

is very large and hence errors in A A and u u have

only very little influence upon the result. In this case the

coefficient of d d is equal to 1, since the declination of stars

passing through the zenith is equal to
cp,

and hence the result

will be affected with the whole error of the declination. But

if the difference of latitude should be determined by this

method for two places not far from each other so that the

same star can be used at each place, this difference will be

entirely free from the error of the declination*).

Example. The star ft Draconis passes very near the

zenith of Berlin. Therefore this star was observed at the

observatory with a prime vertical instrument. The interval

between the transits of the star east and west was 34m438 .5

hence:

{(t t)
= 4 20 26&quot;. 25

and it was
^= 52 25 26&quot;. 77.

Now since in case that the observations are taken on

the prime vertical we have |(Y-f-) = 0, we mic^ from ()
the following simple formula for finding the latitude:

and by means of this we obtain:

y,
= 5230 13&quot;.04.

Finally the differential equation is:

dcf
= -h 0.02310 [d(A A) 0.7934 d(u u)} 4- 0.99925 dS.

*) It is again assumed, that the transit instrument is so far adjusted,

that the line of collimation describes a vertical circle. Compare No- 26 of

the seventh section.

**) This formula is also found simply from the triangle between the pole,

the zenith and the star, which in this case is a right angled triangle.
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25. If we observe two stars on the same vertical circle,

we can find the time, if we know the latitude of the place,

since we have:

sin [i ( -+-
- M] = sin [4 (t

1-
t)
- M], (A}

where :

t,
= u -f- AW

and
m sin If= sin (d -f-

&amp;lt;?)
sin ^ (*

m cos M= sin ($ $) cos ^ (* t).

Since t t
,

that is
,

half the interval of time between

the observations, expressed in sidereal time, is known, we
can find J -M and hence t and t .

The differential equation given in No. 22 shows, that

for finding the time by azimuths it is best to observe stars

near the meridian, because there the coefficient of dcp is at

a minimum, that of dt at a maximum.
The azimuth itself can also be found by such obser

vations. For we have:

cos S sin t

tang A -
-. 5 *

----
cos

&amp;lt;f

sin o -f- sm
y&amp;gt;

cos o cos t

and making use of the equation :

we find:

_ __ _sinj-j3in [4 OjO _

-&quot;sin ft (?- -
If]

&quot;&quot;

If we write here

^ + M &amp;lt; instead of ^ (i M,

we easily obtain:

sin
(f

If the time of both observations is the same or:

t t= a,

the formula (.4) gives the time, at which two stars are on

the same vertical circle.

The places of Lyrae and a Aquilae are for the be

ginning of the year 1849:

a Lyrae a = 18 h 31 47* . 75 S -+- 38 38 52&quot;. 2

ft Aquilae 19 43 23 ,43 8 =+ 8 28 30 .5.
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Therefore we have:

t t= I 1 1 l m 35* . 68 = 17 53 55&quot;. 2.

If we take then
f/&amp;gt;

= 52 30
16&quot;,

we find:

3/=19255 53&quot;.0

4-( ^=158 7 0.4

and from this we get :

\ (t
1+ M= 142 35 38&quot; . 6,

hence :

.1 (* -M) = 24 28 28&quot;. 4

=
1&amp;gt; 37n53 .9

and
* = l h 2m 6 s

. 1
,

* = 2 h 13m 41 s
. 7.

Therefore the sidereal time at which the two stars are

on the same vertical circle is:

Hence if we observe the clock-time when two stars are

on the same vertical circle, if for instance we. observe the clock-

time when two stars are bisected by a plumb-line, we can find

the error of the clock at least approximately, when we know

the latitude of the place and compute the time by means of

the formulae given above. It is best to take as one of the

stars always the pole-star, since it changes its place very

slowly, a circumstance which makes the observation more

easy.

V. DETERMINATION OF THE ANGLE BETWEEN THE MERIDIANS OF

TWO PLACES ON THE SURFACE OF THE EARTH, OR OF THEIR
DIFFERENCE OF LONGITUDE.

26. If the local times, which two different places on

the surface of the earth have at the same absolute instant,

are known, the hour angle of the vernal equinox for each

place is known. But the difference of these hour angles,

hence the difference of the local times at the same moment,
is equal to the arc of the equator between the meridians

passing through the two places and hence equal to their dif

ference of longitude; and since the diurnal motion of the

heavenly sphere is going on in the direction from east to

west, it follows, that a place, whose local time at a certain
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moment is earlier than that of another place, is west of this

place, and that it is east of it, if its local time is later than that

of the other place. For the first meridian, from which the

longitudes of all other places are reckoned, usually that of a

certain observatory, for instance, that of Paris or Greenwich,
is taken. But in geographical works the longitudes are more

frequently reckoned from the meridian of Ferro, whose lon

gitude from Paris is 20 or 1&quot; 20m West.

In order to obtain the local times which exist simulta

neously on two meridians, either artificial signals are ob

served or such heavenly phenomena as are seen at the -same

moment from all places. Such phenomena are first the eclip

ses of the moon. For since the moon at the time of an

eclipse enters the cone of the shadow of the earth, the be

ginning and the end of an eclipse as well as the obscura

tions of different spots are seen from all places on the earth

simultaneously, because the time in which the light traverses

the semi-diameter of the earth is insignificant. The same is

true for the eclipses of the satellites of Jupiter.

These phenomena therefore would be very convenient

for finding differences of longitude, since they are simply

equal to the differences of the local times of observations,

if they could be observed with greater accuracy. But

since the shadow of the earth on the moon s disc is never

well defined^ and thus the errors of observation may amount

to one minute and even more, and since likewise the begin

ning and end of an eclipse of Jupiter s satellites cannot be

accurately observed, these phenomena are at present hardly

ever used for finding the longitude. If however the eclipses

of Jupiter s satellites should be employed for this purpose, it

is absolutely necessary, that the observers at the two stations

have telescopes of equal power and that each observes the

same number of immersions and emersions and those only of the

first satellite, whose motion round Jupiter is the most rapid.

The arithmetical mean of all these observations will give a

result measurably free of any error, though any very great

accuracy cannot be expected.

Benzenberg has proposed to observe the time of disap

pearance of shooting stars for this purpose. These can be
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observed with great accuracy, but since it is not known be

forehand, when and in what region of the heavens a shoot

ing star will appear, it will always be the case, that even if

a great mass of shooting stars have been observed at the two

stations, yet very few, which are identical, will be found

among them; besides the difference of longitude must be

already approximately known, in order to find out these.

Very accurate results can be obtained by observing artifi

cial signals, which are given for instance by lighting a quantity
of gunpowder at a place visible from the two stations.

Although this method can be used only for places near each

other, yet the difference of longitude of distant places may
be determined in the following way: Let A and B be the

two places, whose difference of longitude / shall be found, and

let An AM A 3 etc. be other places, lying between those pla

ces, whose unknown differences of longitude shall be /n A2 ,
/3 etc.

so that /! is the difference of longitude between A
l
and J,

/2 that between A z and A l etc. If then signals are given at

the stations 4,, A a ,
A

b etc. at the local times / T ,
f3 , /, etc.,

the signal from A is seen at the place A at the time

t l /!
= 0, and at the station A^ at the time t

l -+- I, = fc^.

Further the signal given from A. t
is seen at the station A^

at the time t3 /3
=

6&amp;gt;2 ,
and at the station A 4 at the time

^3 -f- I*
= &* But since the difference of longitude of the

places A and B is equal to / -f- ^ -+- . . . -+- /, if the last sig
nal station is A H .-\, or since:

/== (0, 0} 4-
(6&amp;gt; 3 a ) H- (6&amp;gt; 5 4 ) etc.,

we find:

/= 0,,- 1 (& 2 0,, -a) . . .
(6&amp;gt; 2 (9, )

Therefore at the stations, where the signals are observed,
it is not requisite to know the error of the clocks but only
their rate, and it is only necessary to know the correct time
at the two places, whose difference of longitude is to be

found.

Instead of giving the signals by lighting gunpowder, it

is better to use a heliotrope, an instrument invented by
Gauss, by which the light of the sun can be reflected in any
direction to great distances. If the heliotrope is directed to
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the other station, a signal can be given by covering it sud

denly.

The difference of longitude of two places can also be

determined by transporting a good portable chronometer from

one place to the other and finding at each station the error

of the chronometer on local time as well as its rate. For

if the error found at the first place be /\u and the daily rate

be denoted by
-- -

&quot;,
then the error after a days will be

j\u-{-a
u

. Now if after a days the error of the chrono

meter at the other place should be found equal to /\ M ?
we

have, denoting the longitude of the second place east of the

first by I:

n I -h A M H-
d
-

d^
U
u= u -h AM ,

hence

,= A,+^ - A .-.

It is assumed here that the chronometer has kept a uni

form rate during the interval between the two observations.

But since this is never strictly the case, it is necessary, to

transport not only one chronometer from one place to the

other, but as many as possible, and to take the mean of all

the results given by the several chronometers. In this way
the difference of longitude of several observatories, for in

stance that of Greenwich and that of Pulkova has been de

termined. Likewise the longitude at sea is found by this

method, the error of the chronometer as well as its rate

being determined at the place from which the ship sails

and the time at sea being found by altitudes of the sun.

27. The most accurate method of finding the difference

of longitude is that by means of the electric telegraph. Since

telegraphic signals can be observed like any other signals,

the method is of the same nature as some of those mentioned

before, and has no other advantage than perhaps its greater

convenience ;
but when chronographs are used for recording the

observations at the two stations, it surpasses all other me

thods by the accuracy of the results. The chronograph is

usually constructed in this way, that a cylinder, about which
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a sheet of paper is wrapped, is moved around its axis with

uniform velocity by a clockwork, which at the same time

carries a writing apparatus, resting on the paper, slowly in a

direction parallel to the axis of the cylinder. Therefore, if

the motion of the cylinder and of the pen is uniform, the

latter markes on the paper a spiral, which when the sheet is

taken from the cylinder, appears as a system of parallel lines

on the paper. Now the writing apparatus is connected with

an electro-magnet so that, every time the current is broken

for an instant and the armature is pulled away from the

magnet by means of a spring attached to it, the pen makes

a plain mark on the paper. If then the pendulum of a clock

breaks the current by some contrivance at every beat, every
second of the clock is thus marked on the sheet of paper,
and since the chronograph is always so arranged that the

cylinder revolves on its axis once in a minute, there will be

on every parallel line sixty marks, corresponding to the sec

onds of the clock, and the marks corresponding to the same

second in different minutes will also lie in a straight line per

pendicular to those parallel lines. We will suppose now, that

at first the current is broken and that the pen is marking an

unbroken line; then if the current be closed just before the

second-hand of the clock reaches the zero-second of a certain

minute, the first second-mark on the paper will correspond
to this certain second, and hence the second corresponding
to any other mark is easily found. If then the current can

also be broken at any time by a break-key in the hand of the

observer, who gives a signal at the instant when a star is seen

on the wire of the instrument, the time of this observation

is also marked on the sheet, and hence it can be found with

great accuracy by measuring the distance of this mark from
the nearest second-mark.

If the current goes to another observatory, whose lon

gitude is to be determined, and passes there also through a

key in the hand of the observer, the signals given by this

observer will be recorded too by the chronograph at the first

station
;
hence if this observer gives also a signal at the time

when the same star is seen on the wire of his instrument,
the difference of the two times of observation, recorded on
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the paper and corrected for the deviations of the two instru

ments from their respective meridians and for the rate of

the clock in the interval between the two observations, will

be equal to the difference of longitude of the two places.

Since the electrical current, when going to a great dis

tance, is only weak, this main current, which passes through
the keys of the two observers, does not act immediately upon
the electro -magnet of the chronograph, but merely upon a

relay which breaks the local current passing through the

chronograph.
If a chronograph is used at each station and the clocks

are on the local circuits, the signals from each observer and the

seconds of the local clock are recorded by each chronograph,
and hence we get a difference of longitude by every star

from the records of each chronograph after being corrected

for the errors of the instruments and the rate of the clock.

But the difference of longitude thus recorded independently
at each station is not exactly the same. For since the velo

city of electricity is not indefinitely great, there will elapse

a very short, but measurable time, at least if the distance

of the two stations is great, till the signal given at the sta

tion A, being the farthest east, arrives at the station B.

Hence the time of the signal recorded at the station B cor

responds to a time, when the star was already on the me
dian of a place lying west of A, and the difference of longi

tude recorded at B is too small by the time, in which the

electricity traverses the distance from A to B. But the same

time will elapse when the signal from B is given, and the

time recorded at the station A will correspond to the time

when the star was on the meridian of a place a little west of

B, hence the difference of longitude recorded at the station A
will be too great by the same quantity. Therefore the mean

of the differences of longitude recorded at both stations is

the true difference of longitude and half the difference (sub

tracting the result obtained at the station B from that ob

tained at the station A) is equal to the time in which the

electricity traverses the distance from A to B *).

*) The armature -time is also a cause of this difference.
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A single star, observed in this way, gives already a more

accurate result than a single determination of the longitude

made by any other method
,
and since the number of stars

can be increased at pleasure, the accuracy can be driven to

a very high degree, provided that also the greatest care is

taken in determining the errors of the two instruments. Since

the same stars are observed at both stations, the difference

of longitude is free from any errors of the places of the

stars.

In case that the distance between the two stations is

great, sometimes a large number of signals are lost and it

is therefore preferable, to let the main current for a short

time at the beginning and end of the observations pass through
both clocks, so that their beats are recorded by the chrono

graphs at both stations. If then the current is closed at

each station at a round minute, after having been broken for

a short time, so that the clock-times corresponding to the

records on the chronographs are known, the difference of

the two clocks can be obtained from every recorded second

or better from the arithmetical mean of all. These differences,

as obtained at both stations, differ again by twice the time,

in which the current passes from one station to the other,

and which in this way can be determined even with greater

accuracy. A few such comparisons are already sufficient to

give a very accurate result, since the accuracy of one com

parison probably surpasses the accuracy with which the er

rors of the clocks can be obtained from observations. Cer

tainly the comparisons obtained during a few minutes are

more than sufficient for the purpose so that the telegraphic

part of the operation is limited to a few minutes at the be

ginning and the end of the observations. After the first set

of comparisons has been made, the clocks as well as the keys
of both observers are put on the local circuit of each ob

servatory and the errors of the clocks determined by each ob

server. If these errors of the clocks are applied with the

proper signs to the difference of the time of the two clocks,
the difference of longitude of the two stations is found. Also
in this case it is advisable, that the observers use as much
as possible the same stars for finding the errors of their
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respective clocks, in order to eliminate the influence of any
errors of the right ascensions of the stars.

Besides errors arising from an inaccurate determination

of the errors of the two instruments, there can remain another

error in the value of the difference of longitude, produced

by the personal equation of the two observers, that is, by
the relative quickness, with which the two observers per
ceive any impression upon their senses. But this source of

error is not peculiar to this method, but is common to all

and even of less consequence, when the observations are re

corded by the electro -magnetic method. In this case the

error depends upon the time, which elapses between the mo

ment, when the eye of the observer receives an impression

and the moment, at which he becomes conscious of this im

pression and gives the signal by touching the key. If this

time is the same for both observers, the determination of the

difference of the longitude is not at all affected by it; but

if this time is not equal and there exists a personal equation,

the difference of longitude is found wrong by a quantity equal

to it. But the error arising from this source can be entirely

eliminated (at least if the personal equation does not change),

if the same observers determine the difference of longitude

a second time after having exchanged their stations; the dif

ference of the two results is then equal to twice the per
sonal equation, whilst their arithmetical mean is free from it.

The observers can also determine their personal equation,

when they meet at one place and observe the transits of stars

by an instrument furnished with many wires, so that one ob

server takes always the transits over some of the wires and

the other those over the remainder of the wires. If then

these times of observation are reduced to the middle wire,

(Section VII No. 20) the results for every star obtained by
the two observers will differ by a quantity equal to the per
sonal equation. The observations are then changed so, that

now the second observer takes the transits over the first set

of wires, and the first one those over the other wires. Then

nearly the same difference between the observers will be ob

tained and the arithmetical mean of the two values thus found

will be free from any errors of the wire -distances used for
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reducing the observations to the middle wire. After the per

sonal equation has thus been found, the value obtained for

the difference of longitude must be corrected on account of

it. If the&quot; observer whose station is farthest to the east ob

serves later than the other, or if the personal equation is

E W=-\-a, the value found for the difference of longitude

is too small by the same quantity, and hence ~f- a must be

added to it.

Example. On the 29 th of June 1861 the difference of

longitude was determined between Ann Arbor in the StateO
of Michigan and Clinton in the State of New York and from

126 comparisons of the clocks recorded by the chronographs
of the two stations it was found that:

(recorded at A. A,) 13 59m 3s.0 Clinton clock-timc=19 b 58 29s .56 A. A. clock-t.

(recorded at Cl.) 13 59 3 .0 =19 58 29 .40

The clock at the observatory at Clinton was a mean

time clock and its error on Clinton sidereal time was at the

time 13h 59m 3 s .O equal to 4- 6&quot; 33 &quot; 46 s
. 07, while the error of

the clock at Ann Arbor on local sidereal time was -f- lm 1 s
. 87.

From the records by the chronograph at Ann Arbor we find

therefore :

20h 32&amp;gt;M9s.07 Cl. sidereal time = 19 h 59 &quot; 31 .43 A. A. sidereal time

and by the chronograph at Clinton:

20h 32 &quot; 49s. 07 ci. sidereal time = 19 h 59 31 s
. 27 A. A. sidereal time.

Hence we find the difference of longitude by the records

at Ann Arbor equal to

33m 17s.64,

and by those at Clinton:

33 M7s.SO,
or the mean 33 rn 17 s

. 72.

The personal equation is in this case E W= -f-
s

. 04 *),

hence the corrected difference of longitude is 33m 17 s .76.

Note. The electro -magnetic method for finding the diffei-ence of lon

gitude is usually called the American method, since it was proposed by Ame
ricans. The idea originated with to Sears C. Walker and W. Bond Esq., to

whom the honour of inventing it must be accorded, although Mitchel of Cin

cinnati completed the first instrument for recording the observations.

*) Dr. Peters observed at Clinton, the author at Ann Arbor.

21
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28. Besides the observations of natural or artificial sig

nals, which are seen at the same instant at the two stations,

whose difference of longitude is to be found, we may use

for this purpose also such celestial phenomena, which, though

they are not simultaneous for different places, yet can be re

duced to the same time; and they afford even this advantage,
that they can be observed with great accuracy, and that they
are visible over a large portion of the surface of the earth

so that it is possible to find the difference of longitude of

places very distant from each other. Such phenomena are the

occultations of fixed stars and planets by the moon, eclipses

of the sun, and transits of the inferior planets Mercury and

Venus. Since all these heavenly bodies with the exception
of the fixed stars have a parallax, which in the case of the

moon is very considerable, they are seen at the same instant

from different places on the surface of the earth at different

places on the celestial sphere, and hence the occultations as

well as the other phenomena mentioned before are not si

multaneous for different places. Hence in this case the ob

servations need a correction for parallax, since we must know
the time, when those phenomena would have occurred, if there

had been no parallax or rather, if they had been observed

from the centre of the earth.

Therefore we must find first the parallaxes in longitude
and latitude and the apparent semi-diameters of the heavenly
bodies at the time of the beginning and the end of the eclipse

or occupation (or the parallax in right ascension and decli

nation, if it should be preferable to use these co-ordinates).
Then in the triangle between the pole of the ecliptic and

the centres of the two bodies the three sides, namely the

complements of the apparent latitudes and the sum or the

difference of the apparent semi-diameters, are known; hence

we can compute the angle at the pole, that is, the difference

of the apparent longitudes of the two bodies at the time of

observation and, applying the parallaxes in longitude, we find

the difference of the true longitudes, as seen from the centre

of the earth. From this, the relative velocity of the two

bodies being known, we obtain the time of true conjunction,

that is, the time, at which the two bodies have the same
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geocentric longitude, and expressed in local time of the place

of observation. If the beginning or end of the same eclipse

or occultation has also been observed at another place,

we find in the same way the time of true conjunction ex

pressed in local time of that place. Hence the difference of

both times is equal to the difference of longitude of the two

places.

If the times of observation, as well as the data used

for the reduction to the centre of the earth were correct,

the difference of longitude thus obtained would also be cor

rect. But since they are subject to errors, we must

examine, what influence they have upon the result, and try
to eliminate it by the combination of several observations.

This is the method, which formerly was used for find

ing the difference of longitude by eclipses. At present a dif

ferent method is employed. Starting from the equation, which

expresses the condition of the limbs of the two bodies being
in contact with each other and which contains only geocen
tric quantities, another equation is obtained, in which the

unknown quantity is the time of conjunction or rather the

difference of longitude.

29. The limbs of two heavenly bodies are seen in con

tact, when the eye is anywhere in the curved surface envel

oping the two bodies. Since the heavenly bodies are so

nearly spherical, that we can entirely disregard the small

deviation from a spherical form, the enveloping surface will

be the surface of a straight cone, and there will always be
two different cones, the vertex being in one case between
the two bodies

,
while in the other case it lies beyond the

smaller body. If the eye is in the surface of the first cone,
we see an exterior contact, whilst when it is in that of the

second, we see an interior contact.

The equation of a straight cone is the most simple, if

it is referred to a rectangular system of axes, one of which
coincides with the axis of the cone. If the cone is gene
rated by a right angled triangle revolving about one of its

sides, the equation of its surface is:

ar
a

-|-y
2 =

(c zY tang/
2

,

where c is the distance of the vertex from the fundamental

21*
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plane of the co-ordinates, and f is the vertical angle of the

generating triangle.

We must now find the equation of the cone enveloping

the two bodies and referred to a system of axes one of which

passes through the centres of the two bodies. If then we

substitute in place of the indeterminate co-ordinates ar, ?/,
z

the co-ordinates of a place on the surface of the earth, re

ferred to the same system of axes, we obtain the fundamen

tal equation for eclipses. For this purpose we must first

determine the position of the line joining the centres of the

two bodies. But if a and d be the right ascension and de

clination of that point, in which the centre of the more dis

tant body is seen from the centre of the nearer body or in

which the line passing through both centres intersects the

sphere of the heavens, and if G denote the distance, of the

two centres, further a, d and A be the geocentric right as

cension, declination and distance of the nearer body and

ce
i

&amp;lt;5

? A the same quantities for the more distant body, we

have the equations:

G cos d cos a= A cos S cos ft A cos cos #

G cos d sin a= A cos 8 sin A cos S sin ft

sin&amp;lt;/=A sin&amp;lt;? A sin
&amp;lt;?,

or:

G cos d cos (a a )
= A cos A cos S cos (a )

G cos d sin (a )
= A cos S sin ( )

G sin d= A sin 8 A sin S.

If we take as unit the equatoreal semi -diameter of the

earth, we must take -
-. and instead of A and A, since

sin n sin n

A and A are expressed in parts of the semi- major axis of

the earth s orbit, where n is the mean horizontal equatoreal

parallax of the nearer body, n the same for the more dis

tant body; thus wre obtain:

sin n G cos d cos (a ) = A - cos 8 cos 8 cos (a )
sin n

sin n G cos d sin (a )
= cos 8 sin ( )

. . sin 7t
, ,

sin n G sm d = A ,
sin o sin d.

sin n

Now since we also have :

sin n G cos d= A -
f cos 8 cos (a ) cos 8 cos (a ),

sin TF *
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we find:

sin TC cos
-, -,- sin (ft )

, ,. A SHITT cos d
tang )

= r 5sin TT cos d
1 771 s? cos (ft a )A smTT cos o

and: sin n
-TJ-. sin (o S )

, . c,/N A smn
tang (r/ )

= - -

1 -.. -.- cos (()

A

Since in the case of an eclipse of the sun - - is a

small quantity, we obtain from this by means of the for

mula (12) in No. 11 of the introduction:

,
sin TC cos S

a a
. (a )

A S1117T COS . ,

; \A)

and putting: ff
= s

}

we also find : a = 1
s

,

in
, rm

A sin??

We will imagine now a rectangular system of axes of

co-ordinates, whose origin is at the centre of the earth. Let
the axis of y be directed towards the north pole of the equator,
whilst the axes of z and x are situated in the plane of the

equator and directed to points, whose right ascensions are

a and 90 -+- a. Then the co - ordinates of the nearer body
with respect to these axes are:

z = & cos S cos (ft ), y= Asin(9, x = A cos S sin (a a).

If now we imagine the axes of y and z to be turned in

the plane of yz through the angle d *), so that the axis

of z is directed towards the point whose right ascension

and declination are a and d, we find the co-ordinates of the

nearer body with respect to the new system of axes:

sin # sin rf+ cos 8 cos d cos (a a)

sin n
sin S cos d cos sin d cos (a a)

sin n
cos 8 sin (a a)

sin 7t

*) The angle d must be taken negative, since the positive side of the

axis of z is turned towards the positive side of the axis of y.
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or:

cos cos H- d) sin (

sin n
sin (fl cQcosi( g)

a
-(-sin (j+d)sin^ ( a)

2

_ cos $ sin (a a)

sin TT

The axis of * is now parallel to the line joining the

centres of the two bodies. If we let the axis of z coincide

with this line, the co-ordinates x and y will be the co-ordi

nates of the centre of the earth with respect to the new

origin but taken negative.

Let
(f be the geocentric latitude of a place on the sur

face of the earth, its sidereal time and y its distance from
the centre, then the co-ordinates of this place, taking the

origin at the centre of the earth and the axis of parallel
to the line joining the centres of the two bodies, are:

==
C [

g in d sin
&amp;lt;p

-f- cos d cos y cos (0 a)]

*?
=

(* [
cos d sin tp sin d cos

y&amp;gt;

cos (0 a)] (Z&amp;gt;)

f C cos
95

sin (0 a).

The co-ordinates of this place with respect to a system
of axes, whose axis of z is the line joining the two centres

itself, are:

| x, rjy and

and the equation, which expresses, that the place on the sur

face of the earth, given by o, f/
and 6), lies in the surface

of the cone enveloping the two bodies, is:

(x
-

I)
2

-f- (y
-

-nY = (c
-

)&quot; tang/
2

,

where c and f are yet to be expressed by quantities referred

to the centre of the earth. But the angle f is found, as is

easily seen, by the equation:
r =t= r

sin/==
~ -

,

Or

where r and r are the semi-diameters of the two bodies and

where the upper sign must be used for exterior contacts, the

lower one for interior contacts. Now since the unit we
use for G is the semi -diameter of the equator of the earth,

we must refer r and r to the same unit. Therefore if k

denotes the semi-diameter of the moon expressed in parts of

the semi-diameter of the equator of the earth and h the ap-
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parent semi-diameter of the sun seen at a distance equal to

the semi-major axis of the earth s orbit, we. have, since:

also:

,
sin

sin / = r [sin h =t= k sin n }

(JT sm n

or:

sin/= [sin h == k sin n ]. (JE)A 9

But we have:

log sin n = 5. 6186145,

further we have according to Burkhardt s Lunar Tables

& = 0.2725 and according to Bessel h= 15 59&quot;. 788, hence

we have:

log [sin h -f- k sin 7t ]
= 7. 6688041 for exterior contacts,

log [sin h k sin n 1

}
= 1 . 6666903 for interior contacts.

We must still express the quantity c, that is, the dis

tance of the vertex of the cone from the plane of xy. But

we easily see, that:

where again the upper sign is used for an exterior, the lower

one for an interior contact. If we then denote by / the

quantity c tang /&quot;,

that is
,

the radius of the circle in which

the plane of xy intersects the cone, and tang f by /L,
the ge

neral equation for eclipses, which expresses, that the place

on the surface of the earth given by q&amp;gt;\

& and o, lies in the

surface of the cone enveloping both bodies, is as follows :

(x-|) 2
-f-(

&amp;lt;y-77

2
)
= (Z-^) 2

.

Since / is always positive, we must take tang f or /I

negative, if we find a negative value of c from the equa
tion (F).

The values of the quantities used for computing ic, ?/,
z

and |, 77, by means of the equations (C) and (D) are taken

from the tables of the sun and the moon. Since these are

always a little erroneous, the computed values of x, y etc.

will also differ a little from the true values. Therefore if

A#, A^ an(i A^ are the corrections, which must be applied



328

to the computed values x, y and / in order to obtain the

true values, the above equation is transformed into *) :

(x H- A* I)* -+- (y 4- fry T/)
2 =

(I -}- AZ 1) 2
.

We will assume now, that the values of
, , TT, ,

d

and TI have been taken from&quot; the tables or almanacs for the

time T of the first meridian. Then if the unknown time of

the first meridian, at which a phase of the eclipse has been

observed, be T-f- T
,
we have, denoting by xn and y (}

the

values of x and y corresponding to the time T and by x
and y the differential coefficients of x and y:

^=
x&amp;lt;&amp;gt;

-4- x T and y=y +y T .

In the same way the quantities , r]
and J will consist

of two parts. But since these quantities change only slowly
and an approximate value of the difference of longitude, and

hence of the time of the first meridian corresponding to the

time of observation is always known, we can assume, that

these quantities are known for the time of observation.

Hence the equation is now:

[x
- I -+- x T -+- A-r]

2
H- [y,

-
rj -f- y T + Ay]

2 =
(I+ A I

- A).
If the changes of x and y were proportional to the time,

x and y would be constant, and therefore it would not be

necessary to know the time T-f- T for their computation.
Now this is not the case, but since the variations of x and

y are very small compared with those of x and
?/,

we can

solve the equation by successive approximations.

If we put : x i y i&amp;gt;

= A*
y i -+- x i = A#

and : m sin M=x a | n sin N=x }

mcosM=y rj ncosN y (G) i

l )l = L,

the above equation is transformed into:

(L -+- AO 2 = [m cos (M N} 4- n (T -+- OP + [m sin (M N] n i
J

a
,

and we obtain, neglecting the squares of i and /V5
the fol

lowing equation of the second degree for T -f-t:

~ sin (M .V) i -f-
-

n n

*) Errors in a, d and k are here neglected, since they cannot be de

termined by the observations of eclipses.
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Now since :

putting :

L sin y= ?sin(X N\ (//)

we find from this equation:

m L cos yj &lT = cos (J/ iV) =p i =P tang y ?&quot; =p sec
y&amp;gt;,

or except in case that
\jj

is very small:

m sm(MN==v&amp;gt;) A I

jT =-- z =p tang v z =p sec i/&amp;gt;.

n sin \i) n

Now since T for the beginning of the eclipse or any

phase of it must have a less positive or greater negative value

than for the end, the upper sign must be used for the be

ginning, the lower sign for the end of the eclipse or any

phase, if we take the angle /&amp;gt; always in the first or fourth

quadrant *). But if we take
ifr

for the beginning of the

eclipse or any phase in the first or fourth quadrant and for

the end in the second or third quadrant, we have in both

cases :

wsn iv1 = ? ? tang w sec
i/&amp;gt;

11 sin y n

or:

Tit m /*r AT\ L COS W
., A/ f 7Nr = cos (.If N) i ? tang u&amp;gt; sec w. (./)

n n n

The equation (J) is solved by successive approximations.
For this purpose compute the values of x, y, z, a, d, g, I and

/ by means of the formulae (4), (fi), (C), (E) and (F) for

several successive hours, so that the values x
{}
and y {}

and

their differential coefficients can be interpolated for any time.

Then assume a value of T, as accurately as the approxima

tely known value of the difference of longitude .will permit,

interpolate for this time the quantities a?
, ?/, x and y and

find an approximate value of T by means of the formulae

(D), (6?), (#) and (J). With the value T-H T repeat, if

necessary, the whole computation. If we denote again by
T the value assumed in the last approximation and by T
the correction found last, we have T -+- 2

V = t d, where

is the time of observation and d is the longitude of the place

*) We find this easily from the first expression for T ,
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reckoned from the first meridian, that is, that meridian, for

which the quantities a?, i/,
z etc. have been computed, and

taken positive when the place is east of the first meridian.

Hence we have:

d= t T H--- cos (M N) -\
-- cos w -f- i 4- i tang w -\

-- sec W
n n n

TO sin (M N+y) A/ W= t T-i-~ -i- 1: + i tang v H- sec w.
n sin y n

Since the values of x and y have one mean hour as

the unit of time, it is assumed, that d in the above formula

is referred to the same unit. Therefore if we wish to find

the difference of longitude expressed in seconds of time, we

must multiply the formula by the number s of seconds con

tained in one hour of that species of time, in which the ob

servations are expressed. By this operation t T is also

expressed in seconds of the same species of time, in which t

is given or T is expressed in the same species of time as t.

Now the equation (/if) does not give the longitude of

the place of observation from the first meridian, but only a

relation between this longitude and the errors of the several

elements used for the reduction. But if the same eclipse has

been observed at different places, we obtain for each place

as many equations as phases of the ecliptic have been ob

served. By the combination of these equations we can eli

minate, as will be shown hereafter, the errors of several of

these elements and thus render the result as independent as

possible of the errors of the tables.

It yet remains to develop the quantities i and i
,
de

termined by the equations :

or:
ni = sin

ni = sin

The quantities x and y depend upon a
cf,

d d and n.

Therefore if we suppose these quantities to be erroneous,

we have :

A x = A A ( ) -h B A (S d) -h C An

A y= A & (a a) 4- B b(8d)+ C &Tt,

where A, B, C are the differential coefficients of x with re-
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sped to a, d d and TT, and A
,
#

,
C those of y with

respect to the same quantities. Now since A( ), A(&amp;lt;* d)
and A 7? are always small quantities, we can neglect in the

expressions for the differential coefficients the terms contain

ing sin (a a) and sin
(&amp;lt;) d) as factors, and can write 1 in

place of cos (a a) and cos
(JS rf). Then we obtain:

cos S cosA = ----- cos (a a)=
sin 7i sin n

_ sin 8 sin (a a) _
sin n

_ cos S sin (a a) cos n ^x
C- ; r- =

sin 7i tang n
cos 8 sin d sin ( a)

A=-\- =
sin TT

D , cos (8 d) 1
jD = ----- -- =

sin n sin TC

Now since i and t
,
and hence also A(- )? A(^ d)

and A 7* are expressed in part of the radius, we must divide

the differential coefficients by 206265, if we wish to find the

errors of the elements in seconds. Therefore if we put:

20G265 . n sin n

we have:

i Asin2v~cos&amp;lt;*A( ) H- h cosJVA (S d} hcosn&Ti [x sinN+ycosN]
i h cos NCOS S&(a a)-t-AsiniVA(&amp;lt;? d) -+-h COSJC^TT [&amp;gt;coszV y sin A ],

or multiplying the upper equation by cos?/ ,
the lower one

by sin
\\)

and adding them :

i -f-i tangy] = sin (N y;) cos & (a a) -f- cos (^V ^) A (S d)

cosn&Tt[x sin (2V y/) -\-y cos (2V y;)].

From this we obtain:

*
sin (M ^-+- v) , ,

sin (^ y) A ,6

sin y,

~ + h ~
COs

y&amp;gt;

COS *A (
-

)

+ A cosJ2V- y,)M^_
cos y

-M - -- 206265 sin
cos j
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or putting:

= sin JVcos
&amp;lt;?A (a a) H- cos 2VA (S d)

= cos 2V cos S A ( a) -f- sin 2VA (8 d)

^ = 206265 sin n A/ ()
(9= cos n &7t

_ x sin (2V y;) -f- y cos (2V
y&amp;gt;)

cos y

we finally have:

. (Af)

NowT the observation of every phase of an eclipse gives
such an equation and since this contains five unknown quan

tities, five such equations will be sufficient to find them.

However the quantities ?; and cannot be determined in this

way, unless the observations are made at places which are

at a great distance from each other. Nevertheless the com

putation of the coefficients will show us the effect, which

errors of n and I can have upon the .result. Generally it

will only be practicable to free the difference of longitude
from the errors of and

,
but the latter quantity can only

be determined, if the longitude of one place from the first

meridian is already known. When s and are known, the

errors of the tables are obtained by means of the equations :

cos S A ( )
= sin 2V cos 2V

A (S d) = E cos 2V7 -+- sin 2V.

If we collect all the formulae necessary for computing
the difference of longitude from an eclipse of the sun, they
are as follows:

sin 7t cos S .

a= a -j-, -=, (a )
|A SinTT COS

= &quot;

_
Asinw (

sin n

where
,
d and n are the right ascension, declination and

horizontal equatoreal parallax of the moon, ,
r)

r

, A an(i ^

the right ascension, declination, distance and mean horizontal

equatoreal parallax of the sun.
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cos S sin (a a)

sin n
sin (S &amp;lt;/)cos-r(a a)

2
-f- sin (S-\-d) sin A (a i*/ v ,n ,

y = - - -- -
) (2)

SlllTT

cos(^ ef) cos I (a a)
&amp;gt;&amp;lt;!

cos(S-\-d~) sin-}( a)
2

2=
sm TT

sin /= -jr [sin A =p A; sin TT ], (3)
A -9

where :

log [sin A -f- fc sin TT
]
= 7 . 6588041

for exterior contacts and

log [sin A k sin ?r
J
= 7 . 6666903

for interior contacts.

c= * A., (4)
sm/

where the upper sign is used for exterior contacts, the lower

for interior contacts.

,

=c.l,

where I has always the same sign as c.

I;
=

(&amp;gt;

cos
90

sin
(6&amp;gt; a)

77
=

(&amp;gt;
[cos rf sin 9? sin d cos 9? cos

(&amp;lt;9 a)] (6)

===
^ [sm f̂ sm 9

s H~ cos ^ cos 9 cos (^ a)J

where (f and
(&amp;gt;

a-re the geocentric latitude and the distance

of the place from the centre and is the observed sidereal

time of a phase.

If then we have for the time T:

dx .

we compute :

m sinM=x | wsin^V=o:
Itf AT I

I- Ag= l&amp;gt; (7)m cosM=y ij ncosN=y
L sin y= m sin (M N) , (8)

where for the beginning i/j
must be taken in the first or fourth

quadrant and for the end in the second or third quadrant,
and:

r= - . : = _ . cos _
n sin

i/j
n n

Finally we have:

d=t T T + AeH-A^tangy, (10)
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where :

206265. n sin TT

E= sin N cos 8 A ( ) 4- cos N &(S d\
= cos 2V cos 5 A ( ) + sin ^V^ (8 c/),

hence :

cos $ A ( ct)
= s sin iV cos iV

A (5 rf)
= e cos .V-t- ^ sin N.

Example. In 1842 July 7 an eclipse of the sun occur

red, which was observed at Vienna and Pulkova as follows:

Vienna :

Beginning of the total eclipse 18 h 49 n 25 s .O Vienna mean time

End of the total eclipse 18 51 22 .

Pulkova:

Beginning of the eclipse 19 h 7m 3 s
. 5 Pulkova mean time

*End of the eclipse 21 12 52 .0

According to the Berlin Jahrbuch we have the following

places of the sun and the moon:

Berlin m. t. a S
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X

17&quot;
- 1 . 5632144
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In the same way we find from the observation of the

end of the total eclipse, if we retain the same value of T:

|= 0. G53763 TI
= + . 633338 log = 9 .612367

If=277 46 40&quot; log m = 8. 87 1874 logL= 8. 078638

^=150&quot; 54 51 &quot;.5

T =
8&quot;&amp;gt;54-&quot;.74,

hence :

d= + Oh 12 n 27s . 26 H- 1 . 7553 s . 9764 .

Likewise from the observations at Pulkova, since:

5^
= 59 46 18&quot;. 6,

and hence:

9)
= 59 36 16&quot;. 8

and:

log o= 9. 9989172

we find the following equations:

d = lh 8 &quot; 26 .57 + 1 .7559 e + 0.5064
,

d
f= 1 8 22 . 67 -h 1 . 7541 e 0. 3034 .

We have therefore:

d d= -h 55 &quot; 42^ . 42 . 9639 ,

&amp;lt;? &amp;lt;*
=+ 55 55 .41+0. 6730

,

hence:
d d=+ 55m 508 .07

and:
=

7&quot;. 94.

In order to find the error e, we must assume the lon

gitude of one place reckoned from the meridian of Berlin as

known. But the difference of longitude of Vienna and Ber

lin is :

+ h Il n 56.40

and with this we obtain from the first equation for d:

= 20&quot; . 55.

Since we have:

cos S A (a a) = t- sin .ZV cos N
&((t)= scosN-l- sin N,

we find:

cosd(a a) = 21&quot;. 78

and:
d) = 3&quot;.38.

30. In the case of occupations of stars by the moon
the formulae become more simple. Since then n =

,
we

have a =
,
d= d . Hence we need not compute the for

mulae (1), and the co-ordinates of the place of observation
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are independent of the place of the moon, since we have

simply :

|= (&amp;gt;

cos tp sin (0 )

77 = Q [sin y&amp;gt;

cos cos cp sin 8 cos (& )].

The third co-ordinate is also not used, since we have

in this case fQ and hence A= 0, so that we have instead

of the enveloping cone a cylinder. The radius / of the circle,

in which the plane of the co-ordinates intersects this cylin

der, is equal to the semi-diameter of the moon or equal to k.

Hence we need not compute the co-ordinate z and we have

simply :

cos 8 sin ( a )

sin S cos 8 cos 8 sin 8 cos (a )_
sin 7i

Thus the fundamental equation for eclipses is transformed

into the following:

(fc + A /- )

2 = (x 4- A x - |)
a
4- (y -t- \y - i?)

a
,

which is solved in the &quot;same way as before. Taking again
t d=T-\-T and denoting by x

lt
and y the values of a;

and ?/ for the time 7
, by x and ?/ their difierential coeffi

cients, we must compute the auxiliary quantities:

in sin M= x | n sin jV= x

mcosM*=y, 77 ncosN=i/
k sin y^

= m sin (J/* iV)

and we find:

,

m sin (J/
(

^Z= t / H---- s - H- A H- A C tang v&amp;gt;

w sin y
where ft,

and J have the same signification as before.

Example. In 1849 Nov. 29 the immersion and emersion

of a Tauri was observed at Bilk as follows:

Immersion 8h 15m 12 s
. 1 Bilk mean time

Emersion i) 18 10.8.

The immersion of the same star was observed at Ham
burg at

8h 33m 47 . 2 Hamburg mean time.

The place of the star on that day was according to the

Nautical Almanac:
= 4h 11&quot;. 16s . 24 = 62 49 3&quot;. 6

= + 15 15 32&quot;. 2.

22
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Further we have for Bilk:

9?
= 51 1 10&quot;.0

log == 9.999 1201

and for Hamburg:
^ = 5322 4&quot;.2

log Q
= 9.9990624.

Finally we have the following places of the moon ac

cording to the Nautical Almanac:

a n
7&quot; 4 1

6&quot;
1 2 . 35 H- 15 47 24&quot;. G 60 50&quot;. 8

S 4 8 35 . 69 15 54 48 . 8 60 51 . 8

9 h 4 11 9 .31 16 2 6 .5 60 52 .9.

Hence we find for those three times:

x I. Diff. y I. Diff.

7h -1.240980 nrnr~ 9 + 0.527577

8&quot; -0.634228 +0.646318
*

9b -0.027364 +0.764974

Now we have for the time of the immersion at Bilk:

&amp;lt;9
= h 49 29. 93

a = 50 26 34&quot;. 6

hence :

I= 0.484015 and
rj
= -\- 0. 643216.

Taking then T=7 h 50m
,
we obtain for this time:

-TO != 0.251346 yo 77
= 0.016682

x = + . 606789 /= -j- . 118713,

hence :

J/=266 12 .10&quot; ^-= + 78 55 50&quot;

logm= 9.401226 log n= 9.791194

^= 6 43 11&quot;

T= -h 2- Os . 85.

We find therefore from the immersion observed at Bilk

the following equation between the difference of longitude
from Greenwich and the errors s and :

d= -h 27- 12s . 95 -h 1 . 5945 _ Q . 1879
,

and in the same way we find from the emersion observed

at Bilk : d= H- 27 27 . 10 -+- 1 . 5937 e + . 5336 ^,

and from the emersion observed at Hamburg:
d = + 40 3 . 76 H- I . 5945 e

0\.
1362 g.

We have therefore the two equations:
d d=+ 12&quot; 50s . 81 -I- . 0517

,

d rf= -{-12 36.66 0.6698^,
whence we find:

d _ rf=H- 12m 49s. 80 and = 19&quot;. 61.
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31. The fundamental equations for eclipses and occul-

tations given in No. 29 and 30 serve also for calculating the

time of their occurrence for any place. If we take for T
a certain time of the first meridian near the middle of the

eclipse, and compute for this time the quantities a?
, ?/ , x\ y

and L, the fundamental equation for eclipses is:

[*o -i- * T - |J
a H- [y + y T 1 -ri*=L* *),

where and i]
are the co-ordinates of the place on the earth

at the time T-\- T . Therefore if we denote by the side

real time corresponding to the time T, -+- d
()

will be the

local sidereal time of the place, for which we calculate the

eclipse, and if we denote by and v/ the values of and 77

corresponding to the time 6^ -+-d05 we have:

|= | -+- Q cos y cosC^, - a -h rfa ) T^ Z&quot;

rj
=

rj Q -j- Q cos fp sin
(6&amp;gt; fl

U J.

Therefore taking now:

m sinM= x | ,
n sin N=x

(&amp;gt;

cos y cos(0 a-\-d }
~r^r&quot;~

m cosM=y ^ ?
n cosN=y g cos

y&amp;gt;

sin
(&amp;lt;9

a-t-d
() ) -,

-- sin d
d J.

sin y= sin (J/ JV),

where L denotes the value of L corresponding to the time T,

we find:

T = cos (M N) =p
Z
-- cosw=tTd,

n n

where
ijj

must be taken in the first or fourth quadrant, and

the upper sign is used for the beginning, the lower for the

end of the eclipse, or if we take:

cos (M N) - cos w= T
n n

cos(M N} H-
L

- cos w =T
n n

the time of the beginning expressed in local mean time is :

and the time of the end:

*) For an occultation we have L= k= . 2725.

22
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By the first approximation we find the time of the eclipse

within a couple of minutes, therefore already sufficiently ac

curate for the convenience of observers. But if we wish to

find it more accurately, we must repeat the calculation, using
now T -h r and T -f- T instead of T.

It is also convenient to know the particular points on

the limb of the sun (or the moon in case of an occupation),
where the contacts take place. But if we substitute in

aV t-ha?7&quot; and y Q -r]+yT
for T the value:

cos (M JV) =p cos w.
n n

we find:

x =
[in sin Mcos NCOS jYsin y m cos M cosN sin Nsin y

=f= m sin M cos N sin N cos u&amp;gt;

== m cos M sin N sin N cos w]
-

or:
m sin (M N}

sm y= =p L sin (N=f= y;)

and likewise:

y rj
= =p L cos (N=f= y).

Hence we have for the beginning of the eclipse:
x |= L sin (N y/)

= L sin (2V+ 180 y)

y n= Lcos (N v)= L cos (iV-h 180 y),

and for the end:

x I= L sin (N -}- y;) v

^ rj
= L cos (N-\- y).

Sow we have seen in No. 29 that # and
;/ i/ are

the co-ordinates of a place on the earth situated in the en

veloping surface of the cone and referred to a system of axes,

in which the axis of z is the line joining the centres of the

two heavenly bodies, whilst the axis of x is parallel to the

equator ; hence x and y i] are the co-ordinates of that

point, which lies in the straight line drawn from the place
on the earth to the point of contact of the two bodies, and
whose distance from the vertex of the cone is equal to that

of the latter point from the place on the surface of the earth.

Hence - - and ^- - are the sine and cosine of the an^le,L L
which the axis of y or the declination circle passing through
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the point Z*) makes with the line drawn from Z to the

point of contact. But since this point is always very near

the centre of the sun, we can assume without any appre

ciable error, that -- and y n
are the sine and the cosine

Lt lj

of the angle, which the declination circle passing through
the centre of the sun makes with the line from the centre

of the sun to the point of contact. Thus this angle is for

the beginning of the eclipse or any phase of the eclipse:

AT-hlSO&quot; y )

and for the end:
J (A)

AT

-hy. )

Therefore the formulae serving for calculating an eclipse

are as follows. We first compute for the time T of the first

meridian to which the tables or ephemerides of the sun and

the moon are referred (for which we take best a round hour

near the middle of the eclipse) the formulae (1), (2), (3),

(4) and (5) in No. 29 and the differential coefficients x and

y\ and then denoting by 6* the sidereal time corresponding
to the mean time T and by dn the longitude of the place
reckoned from the first meridian and taken positive when

east, we compute the formulae :

| = ()
cos

ff
sin

(6&amp;gt;
-f- d a)

rio Q [cos d sin
y&amp;gt;

sin d cos y cos (0 -f- d a)]

So C [sin d sin y -f- cos d cos
&amp;lt;f

cos (0 -f- d a)].

Computing then the formulae:

m sin M=x Q 1 ,
n sin N=x

(&amp;gt; cosy cos (0 H-d a)
dl,

y *?&amp;gt; ncosN=y ^cosy sin(&amp;lt;9 -|-e? a)
^

J sin d
dt

sin y= sin (M N) (y; always &amp;lt;
== 90)

^o

r= cos (J/ JV)
-- cos v

n n

r = - cos (MN) + cos y,
n n

*) The point Z is that point, in which the axis of z or the line joining

the centres of the two bodies intersects the sphere of the heavens.
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we find the time of the beginning expressed in local mean

time :

and the time of the end:

;= T+d H-T .

The expressions (A) give then the particular points on

the limb of the sun, where the contact takes place.

For calculating an occultation the formulae are as fol

lows. We compute again for the time T of the first meridian,

which is near the middle of the occultation:

cos 3 sin (a a )

_ sin S cos cos S sin cos (a a )

y ~
Bin*

~

and the differential coefficients x and y . Further we com

pute, denoting by the sidereal time corresponding to the

mean time T:

o
==

C cos T sn

r]
=

(&amp;gt; [sin 90 cos $ cos 90 sin cos(&amp;lt;9
a -h r/ )].

Then we compute:

m sin M=x Q 1 ,
n sin N=x

(&amp;gt;cos9p cos(0 +&amp;lt;/ )

7 yQ

mcosM=y ?? , ncosN=y
(&amp;gt; cosy sin

(6&amp;gt;
-f-(/ a )

-- sin
,

where :

log
-~ = 9. 41016*)

sin ^= -- sin
, y;&amp;lt;;==

/J

and:

log jfc= 9. 43537

m f ATN A:-- cos (M N)-- COST/&amp;gt;=T
n n

-- cos (M N) H-- cos t^=T
;

*) As one hour is taken as the unit of the differential coefficients,
-
at

is the change of the hour angle in one mean hour or in 3609 s
. 86 of sidereal

time. If we multiply by 15 and divide by 206265 in order to express the

differential coefficient in parts of the radius, we find:

log = 9. 41916.
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Then the immersion takes place at the local mean time:

t=T+
and the emersion at the time:

The angle of position of the particular point on the limb,

where the immersion takes place, is found from :

Q=r2V-M80 y

whilst for the emersion we have :

Example. If we wish to calculate the time of the be

ginning and end of the eclipse of the sun in 1842 July 7

for Pulkova, we take T= 19 h Berlin mean time. For this

time we have according to No. 29:

.r = 0.44893, y n =4-0.58280, x = -f- 0.55718, /= 0.12133
a= 106 55 . 8, d=-j-22 32 . 8, 2=0.53614, log A = 7. 66262.

Then we have:

6&amp;gt;
= 2 h

3&quot;
1 8 s

,

and since the difference of longitude between Pulkova and

Berlin is equal to -f-l
h 7m 43 s

,
we get:

-\-d a= 300 46 . 9,

and with this:

I = 0.43361, ?=+ 0.69560, log = 9.75470, log L H
= 9.72716.

Further we find:

^ cosy cos (0 +d -a) pL = H- 0.06762 *)

-f = /, cos y sin
(6&amp;gt; + d, a) sin d= 0.04352,

at at

hence:

_ffli =+ 0.48956 and y ^ = 0.07781.

*) We have:

^= 3609s. 86
dt

or:

= + 57147&quot;. 90;
Further we have:

= + 148&quot; .78

hence:

d(0 a)_ 56999^ 12?
dt

the logarithm of which number expressed in parts of the radius is 9.41796.
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Then we get:
J/=18744 . 1 JV=99&quot;1 .9

log m= 9.05628 log n = 9.69522

v,= 12 19 .

hence:

T= 1.057 T = 1.046

= l h o .4 = -hlh2n.8,

therefore the beginning and the end of the eclipse occur at

the times:

*=19h 4m. 3

These times differ only 3m from the true times. If we

repeat the calculation, using 7 =18 h and T=20h
,
we should

find the time still more accurately.
The angle of position of the point on the limb of the

sun, where the eclipse begins, is 267 and that of the point,

where it ends, is 111 *).

32. Another method for finding the longitude is that

by lunar distances, and since this can be used at any time,

whenever the moon is above the horizon, it is one of the

chief methods of finding the longitude at sea.

For this purpose the geocentric distances of the moon
from the sun and the brightest planets and fixed stars are

given in the Nautical Almanacs for every third hour of a

first meridian. If now at any place the distance of the moon
from one of these stars or planets has been measured, it is

freed from refraction and parallax, in order to get the true

distance, which would have been observed at the centre of

the earth. If then the time of the first meridian, to which

the same computed distance belongs, is taken from the Al

manac, this time compared with the local time of observation

gives the difference of longitude. But since it is assumed

here, that the tables of the moon give its true place, this

method does not afford the same accuracy as that ob

tained by corresponding observations of eclipses. Besides the

*) Compare on the calculation of eclipses: Bessel, Ueber die Berechnung
der Lange aus Stern bedeck nngen. Astr. Nachr. No. 151 and 152, translated

in the Philosophical Magazine Vol. VIII and Bessel s Astronomische Unter-

suchungen Bd. II pag. 95 etc. W. S. B. Woolhouse, On Eclipses.
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time of the beginning and end of an eclipse of the sun can

be observed with greater accuracy than a lunar distance.

In order to compute the refraction and the parallax of

the two heavenly bodies, their altitudes must be known. There

fore at sea, a little before and after the lunar distance has

been taken, the altitudes of both the moon and the star are

taken, and since their change during a short time can be

supposed to be proportional to the time, the apparent alti

tudes for the time of observation are easily found and from

these the true altitudes are deduced.

A greater accuracy is obtained by computing the true

and the apparent altitudes of the two bodies. For this pur

pose the longitude of the place, reckoned from the first me

ridian, must be approximately known, and then for the approx
imate time of the first meridian, corresponding to the time

of observation, the places of the moon and the other body
are taken from the ephemerides. Then the true altitudes are

computed by means of the formulae in No. 7 of the first

section, and, if the spheroidal shape of the earth be taken

into account, also the azimuths. The parallax in altitude is

then computed by means of the formulae in No. 3 of the

third section, the formulae used for the moon being the ri

gorous formulae:

v
sin p = (&amp;gt;

sin p sin [z (&amp;lt;p y&amp;gt;
) cos A]

/A

cos p = I
(&amp;gt;

sin p cos [s
(&amp;lt;f&amp;gt; y&amp;gt;&quot;)

cos A],
L\

and finally for the altitudes affected with parallax the re

fraction is found with regard to the indications of the me

teorological instruments. But since the apparent altitude,
affected with parallax and refraction, ought to be used for

computing the refraction, this computation must be repeated.
The distance of the centres of the two bodies is never

observed, but only the distance of their limbs. Hence we add
to or subtract from tfie observed distance the sum of the

apparent semi-diameters of the two bodies, accordingly as the

contact of the limbs nearest each other or that of the other

limbs has been observed. If r be the horizontal semi-diameter

of the moon, the semi-diameter affected with parallax will be :
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r = r [1 -}-/&amp;gt;
sin Aj,

where p is the horizontal parallax expressed in parts of the

radius.

Now since refraction diminishes the vertical semi -dia

meter of the disc, while it leaves the horizontal semi-diame

ter unchanged, that in the direction of the measured distance

will be the radius vector of an ellipse, whose major and mi

nor axis are the horizontal and the vertical diameter. The
effect of refraction on the vertical diameter can be computed

by means of the formulae given in VIII of the seventh sec

tion, or it can be taken from tables which are given in all

Nautical works. If we denote by n the angle, Avhich the

vertical circle passing through the centre of the moon makes

with the direction towards the other body, by ti the altitude

of the latter and by A the distance between the two bodies,

we have:

sin (A A) cos ti

sin TI
sin A

and:
sin h cos A sin h

cos n= ,

sin A cos h

hence:

, __ cos 4 (A -h h + h ) sin (A H- A h }~
s7nT(l4- ti - K) cos i (h -hT A)

Then if we denote the vertical and the horizontal semi-

diameter by b and a, we find by means of the equation of

the ellipse:

b

I/ cos 7t
2 H sii

r a 2

After the apparent distance of the centres of the bodies

has thus been found, the true geocentric distance is obtained

by means of the apparent and true altitudes of the two bod

ies. For if we denote by /T, h and A the apparent alti

tudes and the apparent distance of the two bodies and by
E the difference of their azimuths, we have in the triangle

between the zenith and the apparent places of the two bodies:

cos A = sin H sin h -+- cos H cos h
1

cos E
= cos (H h } 2 cos H cos h

1

sin 4 E* .

Likewise we have, denoting by #, h and A their true

altitudes and the true distance:
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cos A =: sin Hsin h -f- cos Hcos h cos E
= cos (// A) 2 cos Hcos h sin ^

and if we eliminate 2 sin | E
2 we find :

cos A= cos (H- A) -f- f [cos A - cos (JET
- h )} (a)

cos

If we take now:
cos If cos h 1 , .v

cos // cos h! G

we shall have always C
&amp;gt;

1
, except when the altitude of the

moon is great and the other body is very near the horizon.

If we then take:

H 1

h = d and Hh = d (B)

and take d and d positive, we can always put:
cos d ,,, . cos A .; /^,N= cos d&quot; and - - = cos A (C)
c c

because in case that C&amp;lt;1, both cos d and cos A are small.

Thus the equation (a) is transformed into:

cos A cos A&quot; cos d cos d

or if we introduce the sines of half the sum and half the

difference of the angles and write instead of sin (A A&quot;)
the

arc itself:

,, sii

)

If we take here at first sin | (A -h A&quot;)
instead of sin|(A-hA&quot;)

and put:

we obtain:

A=A&quot;H-ar, (E)

a value which is only approximately true, but in most cases

sufficiently accurate. If A should differ considerably from A ?

we must repeat the computation and find a new value of x

by means of the formula:

We have assumed here that the angle E as seen from

the centre of the earth is the same as seen from a place on

the surface. But we have found in No. 3 of the third section,

*) Bremicker, iiber die Reduction der Monddistanzen. Astronomische

Nachrichten No. 716.
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that parallax changes also the azimuth of the moon and that,

if we denote by A and // the true azimuth and altitude, we

have to add to the geocentric azimuth the angle:

o sin p (cp
-

OP ) sin A
A A = -f-

cos a
in order to find the azimuth as seen from a place on the sur

face of the earth. Therefore in the formula for cos A we

ought to use cos (E A ^4) instead of cos E = cos (A 0),

or we ought to add to /\ the correction:

cos Hcos h sin {A a)
d A= dA

sm A
or:

o sin p (OP OP ) cos h sin ^ sin (A a)
a = : 7

sm A

Example. In 1831 June 2 at 23 h 8 m 45 s

apparent time

the distance of the nearest limbs of the sun and the moon

was observed A = 96 47 10&quot; a^ a place, whose north lati

tude was 19 3V, while the longitude from Greenwich was

estimated at 8 h 50m . The height of the barometer was 29 . 6

English inches, the height of the interior thermometer 88

Fahrenheit, that of the exterior 90 Fahrenheit.

According to the Nautical Almanac the places of the

sun and the moon were as follows:

Greenwich m. t. right asc. (( decl. ([ parallax

June 2 12 h 336 6 24&quot;.
- 10 50 58&quot;. 56 44&quot;.

IS&quot; 38 4.7 41 48.4 45 .9

14h 337 9 45 . 7 32 35 . 47 . 9

15^ 41 27 . 23 17 . 9 49 . 9

right asc. decl.

June 2 12&amp;gt; 70 5 23&quot;. 2 -f- 22 11 48&quot;. 9

13h 7 56 .9 12 8 .4

14&quot; 10 30.5 12 27 .9

15h 13 4 . 1 12 47 .3

The time of observation corresponds to 14 h 18m 45 s Green

wich time and for this time we have:

right asc. d = 337 19 39&quot;. 6 right asc. = 70 IV 18&quot;. 5

decl. (C= 10 2941.3 decl. =H-22 1233.9
p= 56 48 .5 TT= 8&quot;. 5.

From this we find the true altitude and azimuth of the

moon and the sun for the hour angles:

+ 80&quot; 2 ,56&quot;. 8
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and: - 12 48 45&quot;. 0:

H== 5 41 58&quot;. 4 h = 77 43 56&quot;.7

A = -h 76 43 . 6 a= 75 4 . 4.

The parallax of the moon computed by means of the

rigorous formula:

. sin p sin [z (a&amp;gt;

&amp;gt; ) cos A]
tang/; ==

.-
-

r

-
f ^ n

1 n sin p cos [z ((p (f ) cos A\

is //= 56 35&quot;.4,
hence the apparent altitude // of the moon

is 4 (&amp;gt; 45 23&quot;. 0. In order to find the refraction, we first find

an approximate value for it, and applying it to H
,
we repeat

the computation of the refraction with regard to the indi

cations of the meteorological instruments. We then find

p = 9 3&quot;. 2 and hence the apparent altitude affected with re

fraction :

# = 4 054 96&quot;. 2.

For the sun we find in the same way:
A = 77 44 6&quot;. 5.

Further we find the semi-diameter of the moon by mul

tiplying the horizontal parallax by 0.2725 and obtain:

/= 15 28&quot;. 8

and from this the apparent semi -diameter, as increased by
parallax:

The vertical semi -diameter is diminished 26&quot;. by the

refraction, and the angle n being 5 48 , the radius of the
moon in the direction towards the sun is :

r =15 4&quot;.6,

and since the semi -diameter of the sun was 15
47&quot;.0, the

apparent distance of the centres of the sun and the moon is:

A = 97 18 1&quot;. 6.

Further we find by means of the formulae (4), (#) and (0) :

log C= 0.000463

J=72 1 5S&quot;

of = 72 49 40

d&quot; = 12 50 48

A&quot;=97 17 33

and at last, computing x twice by means of the formulae (#)
and (E), we find the true distance of the centres of the sun
and the moon:

A= 96 30 39&quot;.
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Now we find according to the Almanac the true dis

tance of the centres of the bodies for Greenwich apparent

time from the following table:

12h 97 43 0&quot;. 4

13h 13 4 . 5

14h 96 43 6 . 5

15^ 13 6 .2,

whence we see
,
that the distance 96 30 39&quot; corresponds to

the Greenwich apparent time 14 h 24m 55 s
. 2, and since the

time of observation was 23 h 8m 45 s

.O, the longitude of the

place is:

gh 43111 498 . 8 east of Greenwich.

The longitude which we find here is so nearly equal to

that, which was assumed, that the error which we made in

computing the place of the sun and moon can only be small.

If the difference had been considerable, it would have been

necessary to repeat the calculation with the places of the

sun and moon, interpolated for 14 h 24m 55 s Greenwich time.

Bessel has given in the Astronomische Nachrichten No. 220

another method *), by which the longitude can be found with

great accuracy by lunar distances. But the method given

above or a similar one is always used at sea, and on land

better methods can be employed for finding the longitude.

33. An excellent way of finding the longitude is that

by lunar culminations. On account of the rapid motion of

the moon the sidereal time at the time of its culmination is

very different for different places. Hence if it is known, how

much the right ascension of the moon changes in a certain

time, the longitude can be determined by observing the dif

ference of the sidereal times at the time of culmination of

the moon. Since these observations are made on the me

ridian, neither the parallax nor the refraction will have any

influence on the result. In order to render it also independ

ent of the errors of the instruments, the time of culmination

of the moon itself is not observed at the two stations, but

rather the interval of time between the time of culmination

of the moon and that of some fixed stars near her parallel.

*) The example given above is taken from this paper.
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A list of such stars is always published in the astronomical

almanacs, in order that the observers may select the same
stars.

The method was proposed already in the last century

by Pigott, but was formerly not much used, because the art

of observing had not reached that high degree of accuracy
which is required for obtaining a good result.

Let a be the right ascension of the moon for the time T
of a certain first meridian, and the differential coefficients

for the same time be ^, *, etc, We will then suppose,

that at a place whose longitude east of the first meridian
is d, the time of culmination of the moon was observed
at the local time T-M-t-d?, corresponding to the time T-\-t
of the first meridian. Then the right ascension of the moon
at this time is:

da , d
2 a d 3 a

H- * tS-H- T &amp;lt;* ,-2 + ;
t* -n -*-..

dt clr dt*

If likewise at another place, whose longitude east from
the first meridian is eT, the time of culmination of the moon
was observed at the time T -+- t -+-&amp;lt;/ , corresponding to the
time T -f - 1 of the first meridian

,
the right ascension of the

moon for this time is:

,

Now since these observations are made on the meridian,
the sidereal times of observation are equal to the true right
ascensions of the moon. If we assume, that the tables, from
which the values of a and the differential coefficients have
been taken, give the right ascension of the moon too small

by A ?
and if we put:

we have the following equations

dt

hence :
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and since we have also :

d d=(& 0} (t 0, (6)

it is only necessary to find t t by means of the equation (a).

In order to do this, we will introduce instead of T the arith

metical mean of the times T-M and T-\-t\ that is, the time

j-l-i (_!_ ) which we will denote by T . Then we must

write T \(f and T -\-\(t f) in place of T-M and

T-i-t\ and if we assume, that the values of and of y etc.

belong now also to the time
7&quot;,

we have the equations:

. [0 @Y d*

&quot;

\~da-
-d

L dt J

and hence:
(/ . , c?

3 a-*= -O^+^C
1-^ ^.

From the last equation we can find t
,

if at first we

neglect the second term of the second member and afterwards

substitute this approximate value of t t in that term. Thus

we find:

- =
da

dt

If the difference of longitude does not exceed two hours,

the last term is always so small, that is may safely be ne

glected. The solution of the problem is again an indirect

one, since it is necessary to know already the longitude ap

proximately in order to determine the time T .

For the practical application it is necessary to add a

few remarks.

If and & are given in sidereal time, h 6&amp;gt; is ex

pressed in sidereal seconds. Thus in order to find also t t

expressed in seconds, the same unit must be adopted for

d &quot;

or
cLa must be equal to the change of right ascension in

dt dt

one second of time. Therefore if we denote by h the change

of the right ascension expressed in arc in one hour sidereal

time, we have:

da h_
dt
~

f5 3600
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Now in the ephemerides the places of the moon are not

given for sidereal time but for mean time, and we take from

them the change of the right ascension of the moon in one

hour of mean time. But since 366.24220 sidereal days are

equal to 365.24220 mean days or since we have:

one sidereal da}
7 =0.9972693 of a mean day

we find, if ti denotes the change of right ascension expressed
in time in one hour of mean time:

da 0. 9972693
,

r/7
=

3600
&quot;&quot;

/i

i ,_ 15x3600 &&
&quot;0.9972693

&quot;~

A
~

or from the equation (6):

. _/ (/&amp;gt; *\(\- l? x ?69()_
\

\ 0. 9972693 A
1 /

Now the second term within the parenthesis is always

greater than 1
,
and hence it is better to write the equation

in this way:

,/
-

&amp;lt;i&amp;gt;

=
(0&amp;gt;

- 0}
(5_L_^__

_
!)

, (e)

and the second place, at which the moon was observed at

the time $
,

is west from the other place, if & is pos

itive, and east, if & is negative.

Now the time of culmination of the moon s centre can

not be observed, but only that of one limb
;
hence the latter

must be reduced to the time, at which the culmination of

the centre would have been observed. In the seventh section

the rigorous methods for reducing meridian observations of

the moon will be given, but for the present purpose the fol

lowing will be sufficient. We call the first limb the one

whose right ascension is less than that of the centre, the

second limb the one, whose right ascension is greater. Hence
if the first is observed, we must add a correction in order

to find the time of culmination of the centre, and subtract a

correction, if the second limb is observed, and this correction

is equal to the time of the moon s semi -diameter passing
over the meridian, which according to No. 28 of the first

7? 1

section is equal to ~ -= -. ; , where /I is equal to the value15 cos o 1 /

of as given by the formula
(&amp;lt;f).

Therefore if ft and ft
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denote the times at which the moon s limb was observed on

the meridian of the two places, we have:

R&amp;gt; *
.. - - .

,

cosd cos dJ 1 A

0.9972693 h

~3600

and hence we find from formula (e) :

where ft denotes the change of the right ascension of the

moon expressed in time during one hour of mean time and

where the upper sign must be used, if the first limb is ob

served, whilst the lower one corresponds to the second limb.

If the instrument, by which the transit is observed at

one place, is not exactly in the plane of the meridian of the

place, then the hour angle of the moon at the time of ob

servation is not equal to zero, and if we denote it by s, the

difference of longitude which we find, must be erroneous by
the quantity:

/ 15X3600 _ \
S
VO. 9972693 h /

Therefore if the instrument is not perfectly adjusted, the

longitude found by this method, can be considerably wrong.
But any error arising from this cause is at least not increased,

if the differences of right ascension of the moon and stars

on the same parallel be observed at both places, since these

are free from any error of the instruments. Nevertheless since

the right ascension of the moon was observed at one place

when its hour angle was s, or when it was culminating at

a place, whose difference of longitude from that place is equal

to 5, we find of course the difference of longitude between

the two places wrong by the same quantity. Therefore we
must add to it the hour angle s, if the meridian of the in-

, O
strument lies between the meridians of the two places, and

subtract s from the difference of longitude, if the meridian of

the instrument corresponds to that of a place which is far

ther from the other place *). How the hour angle s is found

*) We can add also to the observed difference of right ascension of the

moon and the star the quantity
=*= *
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from the errors of the instrument, will be shown in No. 18

of the seventh section.

In order that the observers may always use the same

comparison stars, a list of stars under the heading moon-cul

minating stars is annually published in the Nautical Almanac
and copied in all other Almanacs, for every day, on which

it is possible to observe the moon on the meridian.

Example. In 1848 July 13 the following clock-times of

the transit of the moon and the moon-culminating stars were

observed at Bilk *) :

rj Ophiuchi 17 1 l&quot;52s.64

Q Ophiuchi 12 6 .59

moon s centre 27 34 . 60

/t
1

Sagittarii 18 4 52 . 99

I Sagittarii 18 48 . 12.

On the same day the following transits were observed

at Hamburg:
r] Ophiuchi = 17 h

1&amp;gt;&quot; 42 . 61

$ Ophiuchi = 11 56 . 91

([ I. Limb = 25 50 . 43

ft
1

Sagittarii
= 18 4 43 . 53

I Sagittarii
= 18 38 . 56,

The semi -diameter of the moon for the time of culmi

nation at Hamburg was 15 2&quot;. 10, the declination 18 10 . 1,

and the variation of the right ascension in one hour of mean
time equal to 129 s

. 8, hence A= 0.03596. We find therefore :

TVvT ?;,= 65&quot;. 66,
(1 A)cosd

hence the time of culmination of the moon s centre :

Then we find the differences of right ascension of the

stars and the moon s centre:

for Bilk: for Hamburg:
ri Ophiuchi 4-25 41*. 96 -{- 25ra 13^. 48

Q Ophiuchi -f- 15 28 . 01 -f- 14 59 . 18

^ Sagittarii -37 18 .39 -37 47 .44
I Sagittarii 51 13 .52 51 42 .47,

hence the differences of the times of culmination at Bilk and
at Hamburg are:

*) Compare No. 21 of the seventh section.

23
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0= -}-28.48
28 .83

29 .05

28^95_
mean -f- 28 . 83.

Now we have found in No. 15 of the introduction the

following values of the motion of the moon in one hour for

Berlin time:

lOb 4- 2m 9 . 77

11&quot; 2 9 .91

12 2 10 .05,

and since the time of observation at Bilk corresponds to

about 10 h 30 111 Berlin time, that at Hamburg to about ID 1 16 111

,

we have:

T = 10 1 23m

hence :

/i = 2n9s.S2

and we obtain by means of the formula (e) :

*) Since h is about 30
,

the value of the coefficient of # # in the

equation (A) is about 29, hence the errors of observation have a great in

fluence on the difference of longitude, since an error of s
. 1 in & & pro

duces ah error of 3 s in the longitude.



SIXTH SECTION.

ON THE DETERMINATION OF THE DIMENSIONS OF THE EARTH
AND THE HORIZONTAL PARALLAXES OF THE HEAVENLY

BODIES.

In the former section we have frequently made use of

the dimensions of the earth and the angles subtended at the

heavenly bodies by the semi-diameter of the earth or their ho

rizontal parallaxes, and we must show now, by what methods
the values of these constants are determined. Only the ho

rizontal parallax of the sun and the moon is directly found

by observations, since the distances of planets and comets

from the earth, the semi-major axis of the earth s orbit being
the unit of distance, are derived from the theory of their

orbits, which they describe round the sun according to Kep
ler s laws. Therefore in order to obtain the horizontal par
allaxes of those bodies, it is only necessary to know the ho
rizontal parallax of the sun or of one of these planets.

I. DETERMINATION OF THE FIGURE AND THE DIMENSIONS OF
THE EARTH.

1. The figure of the earth is according to theory as

well as actual measurements and observations that of an ob

late spheroid, that is, of a spheroid generated by the revo

lution of an ellipse round the conjugate axis. It is true,
this would be strictly true only in case that the earth were
a fluid mass, but the surface of an oblate spheroid is that

curved surface which comes nearest to the true figure of the

surface of the earth.
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The dimensions of this spheroid are found by measuring
the length of a degree, that is, by measuring the linear di

mension of an arc of a meridian between two stations by

geodetical operations and obtaining the number of degrees

corresponding to it by observing the latitudes of the two sta

tions. Eratosthenes (about 300 b. Ch.) made use already of

this method, in order to determine the length of the circum

ference of the earth which he supposed to be of a spherical

form. He found that the cities of Alexandria and Syene in

Egypt were on the same meridian. Further he knew that

on the day of the summer solstice the sun passed through
the zenith of Syene, since no shadows were observed at noon

on that day, whence he knew the latitude of that place. He
observed then at Alexandria the meridian zenith distance of

the sun on the day of the solstice and found it equal to 7 12 .

Hence the arc of the meridian between Syene and Alexan

dria must be 7 12 or equal to the fiftieth part of the cir

cumference. Thus, since the distance between the two places

was known to him, he could find the length of the entire

circumference. But the result, obtained by him, was very

wrong from several causes. First the two places are not on

the same meridian, their difference of longitude being about

3 degrees; further the latitude of Syene according to recent

determinations is 24 8
,
whilst the obliquity of the ecliptic at

the time of Eratosthenes was equal to 23 44
,
and lastly the

latitude of Alexandria and the distance between the two pla

ces was likewise wrong. But Eratosthenes has the merit of

having first attempted this determination and by a method,
which even now is used for this purpose.

Since Newton had proved by theoretical demonstrations,

that the earth is not a sphere but a spheroid, it is not

sufficient to measure the length of a degree at one place on

the surface in order to find the dimensions of the earth, but

it is necessary for this purpose to combine two such de

terminations made at two distant places so as to determine

the transverse as well as the conjugate axis of the spheroid.

In No. 2 of the third section we found the following

expressions for the co-ordinates of a point on the surface,

referred to a system of axes in the plane of the meridian,
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the origin of the co-ordinates being at the centre of the earth

and the axis of x being parallel to the equator:

a cos cp~
V\

_~

where a and e denote the semi-transverse axis and the ex-

centricity of the ellipse of the meridian, and
(p

is the latitude

of the place on the surface.

Furthermore the radius of curvature for a point of the

ellipse, whose abscissa is #, is:

_ (a
2 2 xrf
~^b~

where b denotes the semi-conjugate axis, or if we substitute

for x the expression given before:

(1

Therefore if G is the length of one degree of a meridian

expressed in some linear measure and
cp

is the latitude of

the middle of the degree, we have:

7ia(l- e *)G= - r ,

180(1 e
2
sin y

2
)

75

where n is the number 3.1415927. If now the length of

another degree, corresponding to the latitude
(p

has been

measured, so that:

180(1

we obtain the excentricity of the ellipse by means of the

equation :

and when this is known, the semi -transverse axis can be

found by either of the equations for G or G .

Example. The distance of the parallel of Tarqui from

that of Cotchesqui in Peru was measured by Bouguer and
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Condamine and was found to be equal to 176875.5 toises.

The latitudes of the two places were observed as follows:

-3 4 32&quot;. 068

and
-I- 2 31&quot;. 387.

Furthermore Swanberg determined the distance of the

parallels of Malorn and Pahtawara in Lappland and found

it to be equal to 92777.981 toises, the latitudes of the two

places being:
65 31 30&quot;. 265

and
67 8 49&quot;. 830.

From the observations in Peru we obtain the length of

a degree:
G= 56734. 01 toises,

corresponding to the latitude

y= 131 0&quot;.34,

and from the observations in Lappland we get:

y/
= 6620 10&quot;.05:

= 57196.15 toises.

By means of the formulae given above we find from this :

2=0.0064351
a= 327 1651 toises,

and since the ellipticity of the earth a is equal to 1 j/i_ f 2,

we obtain:

a=
310^9

&amp;lt;

In this way the length of a degree has been measured

with the greatest accuracy at different places. But since the

combination of any two of them gives different values for

the dimensions of the earth on account of the errors of ob

servation and especially on account of the deviations of the

actual shape of the earth from that of a true spheroid, an

osculating spheroid must be found, which corresponds as

nearly as possible to the values of the length of a degree as

measured at all the different places.

2. The length s of an arc of a curve is found by means

of the formula:

-Si&amp;lt;

dy
l

,-~-
- dx -

dx 2-
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If we differentiate the expressions of x and ?/, given in

the preceding No. with respect to
&amp;lt;p

and substitute the values

of dx and dy in the formula for s. we find the expression

for the length of an arc of a meridian, extending from the

equator to the place whose latitude is
cf

i

s= a(\ t

But we have:

and if we introduce instead of the powers of sin
(f

the co

sines of the multiples of
(f

and integrate the terms by means

of the formula: /Icos kx dx= -z- sin hx
A

we obtain:

s= (1
2
) E

[y&amp;gt;

sin
2y&amp;gt;

-f- /? sin 4
q&amp;gt; etc.],

where :

If we take here ^= 180, we obtain, denoting by g the

average length of a degree:

180^= (1
2
)/i\7r,

and hence:

,y ==.
[y,

a sin 2
cp -f- {3 sin 4

cp
. .

.]

Therefore the distance of two parallels whose latitudes

are
(f

and
&amp;lt;^

;

, is :

ft .9= - - -

[y cp 2 a sin (y (f) cos (y -f- y)

+ 2 /? sin 2
&amp;lt;&amp;gt; y) cos 2

fy&amp;gt;
+ y)],

or denoting r// y by / and the arithmetical mean of the

latitudes by L, also expressing / in seconds and denoting
206264.8 by ?,

we find:

3600
, ,

(s ,v)
= / 2 ?y a sin / cos 2 Z/ +- 2 ?t?/9 sin 2 / cos 4 j&.

If we substitute here for / the difference of the observed

latitudes and for s s the measured length of the arc of
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the meridian, this equation would be satisfied only in case

that we substitute for g and e and hence for y ,
a and ft

some certain values. But if we substitute the values, de

duced from the observations at all different places, we can

satisfy these equations only by applying small corrections to

the observed latitudes. If we write thus
cp -+- x and cp -t-x

instead of y and ^ ,
where x and x are small quantities

whose squares and products can be neglected, we obtain,

neglecting also the influence of these corrections upon L :

r&amp;gt;roo

(* s)
= I 2 w a sin / cos 2 L -f- 2 w 8 sin 2 1 cos 4 L -+- (x x) o,

9

where :

o= 1 2 -cos I cos 2 L -h 4 /? cos 2 I cos 4 L.

Hence we have:

x x = (
----

(s s) (l 2 iva sin I cos 2 L -j- 2?/;/3 sin 2 / cos 4 LY\ .

V
&amp;lt;7

/

and a similar equation is obtained from every determination of

the latitudes of two places and of the length of the arc of

the meridian between their parallels. Therefore if the num
ber of these equations is greater than that of the unknown

quantities, we must determine the values of g and s so that

the sum of the squares of the residual errors x x etc. is

a minimum. If we take g ti
and as approximate values of

g and and take :

y = . and = (I -f- fc)

we find, if we neglect the squares and the products of i

and k:

360
x - x= * - )

- A + 2?0
[

sin /cos 2 L - sin 2 /cos 4

1 3600
, ,

2w
r &amp;lt;//?

H----- ( s) i H--------
[

sin I cos 2 L - sm 2 I cos 4LJ fc.

$ go C o

Here /? denotes the value of /? corresponding to
,

but in order to get this as well as the differential coefficient

, ,
we must first express ft as a function of a. Now we find:

dn

1^ + 15 525
e +

8
* ^

32
h

1024
^
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and likewise:

If we reverse the series for a we find:

f
2 = a - 2 +4 3 -

and if we introduce this in the expression for ft:

hence :

da 6 27

Therefore if we put:

1 /3GOO
,

\
n= I (6- s) I

)O \
gr

/

H t
a o sin I cos 2 ^ f ^n &quot;o

2
H~ ina

a o
4

)
s in 2 / cos 4 L]

1 3600
a= (

and:

2 iv / 5 , , .

6= sm / cos 2 L I
- a n

*
-f-^, n

4
sin 2 /cos 4

we obtain the equation:
x x = n -+- ai+ b &, ()

and a similar equation is found from a set of observations

for measuring a degree by combining the station which is

farthest south with one farther north.

If we treat these equations according to the method of

least squares, the equations for the minimum with respect to

#, i and k are for this set of observations, if u is the num
ber of all observed latitudes:

px+ [a] z+ [b] k-+- [n] =0
[a] x -h [a a] i-{-[a b] k -f- [a n]

=
[b] x + [a b] i + [6 b] k H- [b n]

=
0,

and if we eliminate
re, each set of observations gives the most

probable values of i and k by means of the equations:

= [on,] -4- [aa,] i-f-[a&,]fc

*[*,] 4- [aft i] e-f-[66 l ]Jfc.

Therefore if we add the different quantities [Wj] which
we obtain from different sets of observations made in dif

ferent localities and designate the sum by (an^, likewise
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the sum of all quantities [aaj by (aa^ etc., we hnd the

equations :

= (an,) -f- (aa.) z 4- (aM &

from which we derive the most probable values of i and k

according to all observations made in different localities.

As an example we choose the following observations:

1) Peruvian arc.

Latitude /

Tarqui
- 3 4 32&quot;. 068

Cotchesqui +0 2 31 387 3 7 3&quot;. 45

Distance of the parallels

176875.5 toises

2) East Indian arc.

Trivandeporum 4-11 44 52&quot;. 59

Paudru 13 19 49 .02 1 34 56. 43

3) Prussian arc.

Trims 54 13 11&quot;. 47

Konigsberg 54 4250.50 29 39&quot;. 03

55 43 40 . 45 1 30 28 . 98Memel

Malorn

Pahtawara

4) Swedish arc.

65 31 30&quot;. 265

67 8 49 .830 1 37 19&quot;. 56

89813.010.

28211.629

86176.975.

92777.981.

Taking now:

57008 i 4- k

we find:

log = 7. 39794

log[yo
2

-f-
1

3

Qgo
4

]
= 4.41567

log[|o
2
H-

-^-
&amp;lt;V&amp;gt;]

= 4. 71670.

If further we put:
10000 i=y
10 k= z,

we obtain the following equations for the four arcs:

1) x
} Xl = 4-1&quot;. 97 4- 1.1225^4- 5.6059 z

2) x\ ^ 2 =4-0 . 94 4- 0.5697 y 4- 2.5835 z

3) x 3 x 3
= Q . 37 4- 0.1779 y 0.2852 z

x &quot;

3 X3 == 4- 3 . 79 4- 0.5433^ 0.9157 z

4) .r 4 xi = .51 + 0.5839^ 1.971 1
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and from these we find:

[n] [a] [6] [an] [a a]



366

Moreover we have:

log = log I/I
-

&quot;e

1
&quot; = 9.9985380,

and since we had:

180$r

(1 e^En
we find:

log = 6.5147884,

and:

log b = 0.5133264.

In this way Bessel*) determined the dimensions of the

earth from 10 arcs, and found the values, which were given

before in No. 1 of the third section:

the ellipticity a =
^-^

the serai-transverse axis a= 3272077. 14 toises

the semi -conjugate axis fi = 3261139.33

log a= 6.5148235

log b= 6.5133693.

II. DETERMINATION OF THE HORIZONTAL PARALLAXES OF THE
HEAVENLY BODIES.

3. If we observe the place of a heavenly body, whose

distance from the earth is not infinitely great, at two places

on the surface of the earth, we can determine its parallax

or its distance expressed in terms of the equatoreal radius

of the earth as unit. Since the length of the latter is known,
we can find then the distance of the body expressed in terms

of any linear measure.

We will suppose, that the two stations are on the same

meridian and on opposite sides of the equator, and that the

zenith distance of the body at the culmination is observed

at both stations. Then the parallax in altitude will be for

one place according to No. 3 of the third section:

sin
/&amp;gt; ==(&amp;gt;

sin p sin [z (y&amp;gt; y )],

where p is the horizontal parallax, z the observed zenith dis

tance cleared from refraction, (f the latitude,, (p the geocen-

*) In Schumacher s Astronomische Nachrichten No. 333 and 438.
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trie latitude and
(&amp;gt;

the distance of the place from the centre

of the earth. Hence we have:

1 _ __ $ sin [z (y&amp;gt; y )]

sin p sin p

We have also, if
cp

is the latitude of the other place,

and
(&amp;gt;j

the geocentric latitude and the distance from the

centre :

sin /7 sin/,

If we now consider the two triangles which are formed

by .the place of the heavenly body, the centre of the earth

and the two stations, the angle at the body in one of the

triangles is p ,
that at the place of observation 180 z -\-

&amp;lt;p

-
(p,

and the angle at the centre (p =^= &amp;lt;?,

where r&amp;gt; is the

geocentric declination of the body and where the upper or

the lower sign must be used, if the heavenly body and the

place of observation are on the same side of the equator or

on different sides. The angles in the other triangle are p 19

180 z
l -j- (fi cp\

and
&amp;lt;p\

=t= 8. We have therefore:

and:

p
&amp;gt; + p

&amp;gt; t=g + ~
l -V-Vi-

Therefore if we denote the known quantity p -f- p\ by

TT, we have the equation:

(i
&amp;gt; sin [z

(y_-^J&amp;gt;)] _ (&amp;gt;i sin[g, (y, y ,)]

sin p sin (TT jo )

whence follows:

, _ (&amp;gt;

sin TT sin [2 (90 90 )]
lg P

$ ,
sin [2 , (99, 9? , )] H-

(&amp;gt;

cos n sin [s (y 9? )]

or :

tang y __ _ gi sin7Tsin[.g, (y, y ,)]

(&amp;gt;

sin [2 (&amp;lt;p &amp;lt;f&amp;gt;
)] -+- $ |

cos n sin [z , (9? , 9? , )]

When either p or p\ has been found by means of these

equations, we find p either from:

sin
sm ;?

= 7
----

7
-

^ sm [z (y 9? )]

or from: sin = r-
i3ini)

sin p =
&amp;gt;,

sin [2, (95, y&amp;gt;
,)

It was assumed, that the two places are on opposite
sides of the equator, a case, which is the most desirable for

determining the parallax. But if the two places are on the
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same side of the equator, the angles at the centre of the

earth in the triangles used before are different, namely &amp;lt;/ =p$
in one triangle and (f\ =p t) in the other. If we put in

this case:
TV=

]&amp;gt; , V .c
,

-
(y, &amp;lt;p),

we find p or p\ from the same equations as before.

If the two places are not situated on the same meridian,

the two observations will not be simultaneous, and hence the

change of the declination in the interval of time must beO
taken into account.

In this way the parallaxes of the moon and of Mars were

determined in the year 1751 and 1752. For this purpose

Lacaille observed at the Cape of Good Hope the zenith dis

tance of these bodies at their culmination, while correspond

ing observations were made by Cassini at Paris, Lalande at

Berlin, Zanotti at Bologna and Bradley at Greenwich. These

places are very favorably situated.
&quot;

The greatest difference

in latitude is that between Berlin and the Cape of Good

Hope, being 8G|, whilst the greatest difference in longitude

is that of the Cape and Greenwich, being equal to 1~ hour,

a time, for which the change of the declination of the moon

can be accurately taken into account.

By these observations the horizontal parallax of the moon
at its mean distance from the earth was found equal to 57 5&quot;.

A new discussion of these observations was made by Olufsen,

who, taking the ellipticity of the earth equal to
302 Q^

found

57 2&quot;. 64, while the ellipticity given in the preceding No.,

would give the value 57 2&quot;. 80 *). Latterly in 1832 and 1833

Henderson observed at the Cape of Good Hope also the

meridian zenith distances of the moon, from which in con

nection with simultaneous observations made at Greenwich

he found for the mean parallax the value 57 1&quot;. 8**)- Tne

value adopted in Burkhardt s Tables of the Moon is 57 0&quot;. 52,

while that in Hansen s is 56 59&quot;. 59.

The problem of finding the parallax was represented

above in its simplest form, but in the case of the moon it

*) Astron. Nachrichten No. 326.

**) Astron. Nachrichten No. 338.
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is not quite as simple, since only one limb of the moon can

be observed, and hence it is necessary to know the apparent

semi-diameter, which itself depends upon the parallax.

If r and r denote the geocentric and the apparent semi-

diameter, A and A the distances from the centre of the earth

and from the place of observation, we have:

sin r A
sin r A

Further in the triangle between the centre of the earth,

that of the moon and the place of observation, we have :

A sin (180 z )

A
&quot;

sin(z -X)
where z is the angle, which the line drawn from the place
of observation to the centre of the moon makes with the

radius of the earth produced through the place, and since:

z = z-(y-rt*S
where z is the observed zenith distance of the moon s limb

and where the upper sign corresponds to the upper limb, we
have :

_A = Sin [z (y y )
== /]

A sin [z (yy^p =fe= r
]

If we introduce this expression in the equation for
sin r

sinr

and eliminate p by means of the equation:
sin p

1=
(} sin p sin [z (tp y )

== r
] ,

we obtain, writing for the sake of brevity z instead of z

(ff &amp;lt;^
) and taking Q = 1 :

sin r = sin r -f- sin r sin p cos (z == ? ) -f- \ sin r sin p
2
sin (2 =t r )

2
,

or neglecting terms of the third order:

r = r -f- sin r sin p cos (z == r) -f- { sin r sin
/&amp;gt;

2
sin (z

==
r)

2
.

Now the geocentric zenith distance Z of the moon, ex

pressed by the zenith distance z of the limb, is:

r, __ i / r ;\ sin
3
sin (2=t=r )

3

^= z =t= r sin p Bin (z == r ) ,

6

or if we substitute for r its expression found before:

Z= z =t= r == sin r sin/) cos (2 =t=
r)

dt= 4- sin r
sin/&amp;gt;

2
sin (2 == ?)

... sin n 3 sin (2 ==r)
3

sin p sin (a
== r)

-

If we develop this equation and again neglect the terms

of a higher order than the third, we find:
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Z= z == r sin r
2
sin p sin z == 4- sin r sin

y&amp;gt;

2
sin z

2

sin/;
3 sin z 3

sm p cos r sin. z -+-
*

sin p sin r sin z ,

or introducing 1 | sin r2 instead of cos r and replacing

sin p by y sin p :

Z=z^=i Q sin/? sin z I Q sin;) sin z sin r 2 =i=
7}

^&amp;gt;

2
sin/&amp;gt;

2
sin r sin 2

2

(&amp;gt;

3
sinp

3
sin z 3

&quot;T&quot;

and finally, if we take:

sin r= k sin p ,

and hence:
/ = k sin p -+- -jt

A:
3
sin yr

3

and introduce again z A in place of a, where A = ^ &amp;lt;/&amp;gt;
,

we have:

Z = z a sm P [f, sin (s
-

A) =F A;]
-

6
fe sin (2 -i) =F *]

3
.

If D is the geocentric declination of the moon s centre,

the observed declination of the limb, we have also, since

D =
(f

Xand d=
&amp;lt;f (z A) :

I) = &amp;lt;? 4- sin p [o sin (s A) =j= fc] + ~^^- [Q sin (s A) =f= ^]
3

.

The quantities {&amp;gt;

and A depend on the ellipticity of the

earth
,
and since it is desirable, to find the parallax of the

moon in such a wr

ay, that it can be easily corrected for any
other value of the ellipticity, we must transform the ex

pression given above accordingly. But according to No. 2

of the third section we have:

- r sin 2 y + . . v gf

a 2

If we introduce here the ellipticity, making use of the

equation:
a

and neglect all terms of the order of 2

,
we find:

m
(fi

1= K= a sin 2
&amp;lt;p.

Moreover we had:

, __ 2 2 _ cos 9P
2

_ (1 g-)
2
siny

2

~
1

2
&quot;sfn&quot;^

1
2 sin y

2

_ 1 2
2
sin 9

2 H- *
sin p

2

1
2 sin

&quot;
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If we introduce here also a by means of the equation:
2 = 2 a a 2

and neglect all terms of the order of 2
,
we find:

(&amp;gt;

1 a sin
y&amp;gt;

2
.

Thus the last expression for D is changed into:

D= -{- [sin 2 =p fc]
sin p [sin &amp;lt;p

2
sin 2 ~h sin 2

90 cos 2] a sin p

.... sin p
3

-f-[sms=T=fc]
8

-

^-.

Every observation of the limb of the moon, made at a

place in the northern hemisphere of the earth, leads to such

an equation, in which the upper sign must be taken in case

that the upper limb of the moon has been observed, whilst

the lower sign corresponds to the lower limb of the moon.

Likewise we find for a place in the southern hemi

sphere :

D
,

=
&amp;lt;?! [sin z

, =p k\ sin p , [sin z
, =p k]

3 ~
b

-f- [sin tp ,

2
sin z, -+~ sin

2y&amp;gt;,
cos z

t ] sin;?,.

Now let t and ^ be the mean times of a certain first

meridian, corresponding to the two times of observation, let

Z) be the geocentric declination of the moon for a certain

time T and
c

. its variation in one hour of mean time and taken
a t

positive, if the moon approaches the north pole, then we find

from the two equations for D and D 1 :

(*i
^ t

= ^j ^ [sin 2, =pl- (sin y,
2
sin z

t -hsin 2^, cos 2,)] ship,

jt [sin .c =p k a (sin
y&amp;gt;

2
sin z -f- sin 2

9? cos 2)] sin p

^fy , 71 , sinp,
3

sin 3-
[sin 2, =f k]

3

|
-

[gin 2 =p A;J -f-
.

Moreover if p Q is the parallax for the time T and ^ its

change in one hour, we have:

sin p = sin p -f- cos p
l

-f (t T}
at

sin p ,

= sin p + cos p
-jf

(t t T),

therefore we find the following equation for determining the

parallax for the time T:

24*
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=
tf, S H- (t /,) [(sins, =f= &)

3 H- sin

-
--. cos p [(sin 2 =f= fc) (/ 7&quot;) -f- (sin c, =p

( sin y
2
sin s+ sin 2 OP cos 2 )

..-
[sm2, -fsin2=pA-=F/.-Jsin;? H-rtsinp J j *).

v 4 sin 09 . sin z . sin z nn . rns 2 . &amp;gt;

If at the two places opposite limbs of the moon are

observed, the coefficient of sin p Q is rendered independent
of /c, and since this quantity thus only occurs in the small

terms multiplied by sinp
3 and

-j-
,
the value

of/&amp;gt; () ,
which is

found from the equation, is independent of any error of k.

Since we know the parallaxes from former determinations suf

ficiently accurately so as to compute the third and the fourth

term of the formula without any appreciable error, we can

consider the first four terms of the formula as known, since

all quantities contained in them have either been observed

or can be taken from the tables of the moon. Therefore if

we denote the sum of these terms by ft,
the coefficient of

sin p {) by a and that of a sin p by 6, we obtain the equa
tion :

= n
sin/&amp;gt; (a b a),

from which p can be found as a function of a. But in

stead of the parallax p {}
for the time T it is desirable to find

immediately the mean parallax, that is, the horizontal parallax

for the mean distance of the moon from the earth **). There

fore if K is the value of the mean parallax adopted in the

lunar tables, and n the value taken from those tables for the

time T, we have, if we denote the sought mean horizontal

parallax by II:

sin p ==~ sin 11= fi sin ZT,A
hence the equation found before is transformed into:

= --- sin 77 (a ba).
ft

*) If the second differential coefficients are taken into account, we must

add the term:

but if we take: T=\ (/,-+-/),

this term vanishes.

**) Namely the distance equal to the semi-major axis of the moon s orbit.
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Example. In 1752 February 23 Lalande observed at

Berlin the declination of the lower limb of the moon:
S= + 20 26 25&quot;. 2,

and Lacaille at the Cape of Good Hope the declination of

the upper limb:

l
= + 21 46 44&quot;. 8.

For the arithmetical mean of the times of observation,

corresponding to the Paris time:

r=6 h 40,
we take from Burkhardt s tables:

^= 59 24&quot;. 54

d̂t

finally we have:

y= 52 30 16&quot;

and

&amp;lt;p
{
= 33 56 3 south.

Since the longitude of the Cape of Good Hope is 20m

19 s
. 5 East of Berlin and the increase of the right ascension

of the moon in one hour was 38
10&quot;,

the culmination of the

moon took place 21m 11 s later at Berlin than at the Cape,
hence we have:

*&amp;lt;, =-t-21 Ml&amp;lt;S hence (t *,)
~=

12&quot;. 06
at

further we have:

&amp;lt;y,

?= -MO 20 19&quot;. 6.

The third term, depending on sin p
3

,
we find equal to

-OM2, if we take ft = 0.2725; therefore if we omit the

insignificant term multiplied by ,
we find:

n= -M&amp;lt;&amp;gt; 20 7&quot;. 42

or expressed in parts of the radius:

n= -h 0.023307

and since the value of the mean parallax adopted in Burk
hardt s tables is:

^=57 0&quot;.52

we have:

log^= 0. 01792,
hence :

= + 0.022365.
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If we compute the coefficients a and 6, we find, since:

z= 323 51&quot; and ^=55 42 48&quot;

the following values :

a= 4- 1.3571 and /,=-+- 1.9321

and hence the equation for determining sin 77 is:

= 4- 0.022365 sin 77(1.3571 1.9321 ).

Every combination of two observations gives such an

equation of the form:

0=- -x(a ba)

If there is only one equation, we can find from it the

value of x corresponding to a certain value of nr. For in

stance taking a = -- we find :

ij i) 10

log sin 77= 8.21901

II=56 55&quot;. 4.

But if there are several equations, we find for the equa
tion of the minimum according to the method of least squares :

[a a] x [a b] a x a =
0,

hence:

.

[a a] [a a]

r
n~]

r
a a

= L ^J^L
[a a] [a a] [a a]

Thus Olufsen found for the mean horizontal parallax of

the rnoon the value 57 2&quot;. 80 *). Since the parallax of the

moon is so large, it may even be determined with some de

gree of accuracy from observations made at the same place

by combining observations made near the zenith, for which

the parallax in altitude is small, with observations in the

neighbourhood of the horizon, where the parallax is nearly

at its maximum. In this way the parallax of the moon was

discovered by Hipparchus, since he found an irregularity in

the motion of the moon, depending on its altitude above the

horizon and having the period of a day.

*) Astron. Nachrichten No. 32G.
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4. This method does not afford sufficient accuracy for

determining the horizontal parallax of the sun, but the first

approximate determinations were obtained in this way. In

1671 meridian altitudes of Mars were observed by Richer

in Cayenne and by Picard and Condainine at Paris, and from

these the horizontal parallax of Mars was found equal to

25 . 5. But as soon as the parallax of one planet is known,
the parallaxes of all other planets as well as that of the sun

can be found by means of the third law of Kepler, according

to which the cubes of the mean distances of the planets from

the sun are as the squares of the times of revolution. Thus

from this determination the parallax of the sun was found

equal to 9&quot;. 5. Still less accurate was the value found from

the observations ofLacaille and Lalande, namely 10&quot;. 25; nei

ther have the observations made latterly in Chili by Gilliss

contributed anything towards a more accurate knowledge of

this important constant. But allthough all results hitherto

obtained by this method have been insufficient, it is still de

sirable, that they should be repeated again with the greatest

care, since the great accuracy of modern observations may
lead to more accurate results even by this method *).

The best method for ascertaining the parallax of the sun

is that by the transits of Venus over the disc of the sun at

her inferior conjunction, which was first proposed by Halley.

The computation of such transits can be made in a similar

way as that given for eclipses in No. 29 and 31 of the pre

ceding section. The following method, originally owing to

Lagrange, was published by Encke in the Berliner Jahrbuch

for 1842.

If
,

&amp;lt;&amp;gt;

,
A and D are the geocentric right ascension and

declination of Venus and the sun for the time T of a cer

tain first meridian, which is not far from the time of con

junction, then we have in the spherical triangle between the

pole of the equator and the centres of Venus and the sun,

denoting the distance of the two centres by m and the angles

at the sun and Venus by M and 180 IT:

*) Such observations luive been made since during the oppositions of

Mars in 1862 and seem to give a greater value of the parallax than the one

considered hitherto as the best.
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sin -$
m . sin \ (M1

-+- M}= sin \ (

sin | m . cos \ (M
1

-f- M)= cos ] (a A) sin i (# /&amp;gt;)*

cos ^ w . sin ^ (M 1

M}= sin \ (a .4) sin ^ (8 -+ D)
cos 4 TO . cos 4 (M M) = cos ^(a A) cos (tf Z&amp;gt;),

or since a A and d D and hence also m and M M are

for the times of contact small quantities:

m sin M (a A) cos ^ (&amp;lt;? -+-&amp;gt;)

Z).

Taking then:

n cos =
dt

where and are the relative changes of the
dt dt

right ascensions and declinationa in the unit of time, and de

noting the time of contact of the limbs by T-f-r, we have:

[m sin M-+- r n sin N]
2 H- [m cos M -f- rn cos N]

2 = [R ==
r]

2
,

where R and r denote the semi -diameter of the sun and of

Venus, and where the upper sign must be used for an ex

terior contact, the lower sign for an interior contact.

From this equation we obtain:

Therefore if we put:
m sin (M 2V)

^_^_ r
= sin

y;, where y &amp;lt;
=b 90, (C)

we obtain :

r= cos (M N} =f= cos w. (D)
n n

where again the upper sign must be used for the ingress and

the lower for the egress. Therefore at the centre of the earth

the ingress is seen at the time of the first meridian:

T --- cos (M N}
r
cos y

n n

and the egress at the time:

T cos (M N) + R=^ T
cos y.

n n

Finally if is the angle, which the great circle drawn

from the centre of the sun towards the point of contact ma-
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kes with the declination circle passing through the centre of

the sun, we have :

(/2 dt=
r) cos = m coeM -+- n cosN . t

(ft =t= r) sin = m sin M-+- n sin N .r

or:

cos = sin N sin y =p cosN cos y
sin = sin y cos .2V =p cos

y;
sin JV,

hence for the ingress we have:

= 180H-2V
&amp;gt; (^)

and for the egress :

These formulae serve for computing the -times of the in

gress and egress for the centre of the earth. In order to

find from these the times for any place on the surface of the

earth, we must express the distance of the two bodies, seen

at any time at the place, by the distance seen from the cen

tre of the earth.

We have:

cos m= sin 8 sin D -f- cos 8 cos I.) cos ( A).

If
,

&amp;lt;)

,
A and D be the apparent right ascensions and

declinations of Venus and the sun, seen from the place on

the surface of the earth, and m the apparent distance of the

centres of the two bodies, we have also:

cos m = sin sin D -f- cos 8 cos D cos (
A 1

}

and hence:

cos m = cos m + ( 8 8) [cos 8 sin D sin 8 cos D cos (a A)]

4- (D D) [sin^cosZ* cos # sin Z&amp;gt; cos (a A)]

(a
1 a ) cos 8 cos D sin (a A)

-4- (A
1

A) cos 8 cos Z&amp;gt; sin (a 4).

But according to the formulae in No. 4 of the third sec

tion we have *) :

*) We have according to the formulae given there:

w s sin(&amp;lt;? v)
o o Ti sin cp

--
;

;= 7t sm cp Ism o cotangy cos ol.
sin y

but since:

cotang Y= cos ( 0} . cotang y&amp;gt;,

we have:

8 8= n [cos cp sin 8 cos (a (9) sin
y&amp;gt;

cos 8].
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S S = 7t [cos rp sin $ cos (a 0) sin y cos 8]

// I)= p [cos &amp;lt;p

sinD cos (a 0) sin ycos /&amp;gt;j

a = rt sec S sin (a 6*) cos ip

A A = p secD sin (J. 0) cos y,

where n and p are the horizontal parallaxes of Venus and

the sun; and if we substitute these expressions in the equa
tion for cos m

,
we obtain :

cos m = cos m

-f- [cos 8 sin/J sin 8 cosD cos ( A}} [TTCOS&amp;lt;JP sin$cos( 0) -Trsinycos #]

4- [sin $cos.Z&amp;gt; cos$sin/&amp;gt;cos (a ^1)J [79 cosy sin/&amp;gt;cos( 6&amp;gt;) p sin ycos/)]

cos D sin ( A) . n sin ( 0) cos y ()
-+- cos $ sin ( ^4) .

/&amp;gt;

sin (A- 0} cos y.

If we develop this equation, we find first for the coef

ficient of cos
tf

:

7i [sin S cos S sin D cos ( 6&amp;gt;)
sin # 2 cos D cos ( 0) cos ( ^4)

cos Jj sin ( 0) sin ( A)]

-\- p [sin $ cos D sin /&amp;gt; cos ( 0) cos S sin JJ* cos ( 0} cos ( ^4)

-f- cos S sin ( 0~) sin ( vl)J

or since:

sin (V- = 1 cos S* and sin D 2 = 1 cos D* :

71 [(sin 8 sin/&amp;gt;+ cos #cos Z&amp;gt; cos (a A) ) cos $ cos ( 0} cos D cos (A 0)]

-f-/&amp;gt;[(sin^sinZ&amp;gt;H-cos^cosZ&amp;gt;cos( ^l))cosDcos(^4 0} cos S cos (a 0)],

hence :

71 COS /ft COS S COS (rt 0) 71 COSZ&amp;gt; COS (A 0)

H- /) cos m cos Z&amp;gt; cos (^l 6&amp;gt;)
/&amp;gt;

cos 8 cos ( 0).

This we can transform in the following way:

|?r cos m cos $ cos a n cos Z&amp;gt; cos ^4] cos

-f- [p cos ?. cosD cos ^1 p cos J cos J
cos

-f- [TT cos M cos $ sin 7t cosD sin^] sin

-+ [p cos m cos D sinA p cos 8 sin
j

sin
6&amp;gt;,

and hence the term multiplied by cos ^ becomes :

[(71 cos m p} cos $cos (n ;) cos m} cos D cos ^4] cos
&amp;lt;f

cos . .

-t- [(TT cos /ft p} cos $ sin (it p cos m) cos Z&amp;gt; sin A] cos y sin 0.

Further the coefficient of sin y in the equation (a) is :

7i
[

cos 8 *
sin D H- sin &amp;lt;? cos ^ cosD cos (a ^1)]

-+-;&amp;gt; [
sin ^ cos //2

-1- sin/^cosjL cos ^ cos ( ^Ijj,

or since cos r)
2 =1 sin &amp;lt;)

2 and cos /&amp;gt;

2 =1 sin D 2
:

TT
[

sin D+ sin $ (sin 8 sin /&amp;gt;-+- cos 5 cos Z&amp;gt; cos ( ^4))J

-H p [
sin 8 -+- sin/) (sin 8 sin D -f- cos ^ cos /) cos ( ^4))J-

Therefore the term of the equation (a), which is mul

tiplied by sin y, is :

(?r cos m
/&amp;gt;)

sin ^ sin y (TT jt&amp;gt;

cos m) sin Z) sin
&amp;lt;p,
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and thus the equation () is transformed into the following:
cos m = cos in

-J- [(Vr cos m p) cos S cos a (n p cos TO) cosL&amp;gt; cos -^4] cos
(p

cos (9

-+- [(ft cos TO p) cos S sin (TT
y&amp;gt;

cos m) cosD sin yl} cos
(p

sin 6&amp;gt; ( c )

-f- [O/r cos TO p) sin (V (jt p cos TO.) sin D] sin y.

If we take now:
it cos m - p =f sin s

TT sin m = / cos s,

we have:
7t p cos TO =fsm (s TO),

and henee:

cos in. = cos in.

H-/[sin ft cos &amp;lt;? cos a sin (.s -m) cos L) cos A] cos y cos

-f-yfsin s cos $ sin a sin (* in) cosl) sin ^4] cos
&amp;lt;f&amp;gt;

sin (e)

+/[sin s sin $ sin (s m) sin jDj sin
f/&amp;gt;.

Further if we take:

sin s cos 8 cos sin
(.s- ?//) cos I) cos .4 = P cos A cos /?

sin s cos $ sin a sin (* in) cos D sin .4 = P sin A cos ft (/ )

sin A- sin $ sin (,v TO) sin Z&amp;gt;
= P sin /^,

we find by squaring these equations the following equation
for P:

P 2 == sin s
z
H- sin (s /)

1&amp;lt;! 2 sin s sin (s m) cos m
= sin A-

2
sin .s

2
cos m 2

-f- cos .$ sin TO
- = sin TO

2
.

Hence we may put:
sin s cos $ cos a sin (s TO) cos /) cosA = sin m cos 1 cos (3

sin s cos ^ sin a sin (s m) cosD sin J.= sin TO sin A, cos /9

sin ,v sin ^ sin
(.s- TO) sin D = sin m sin

(3,

or:

sin TO sin (A J) cos ft
= sin a cos S sin (a J)

sin // cos (A A) cos p = sin s cos S cos ( ^1) sin (s m) cos/&amp;gt;
(&amp;lt;/)

sin TO sin /^
= sin s sin S sin (s TO) sin /&amp;gt;.

But we have :

sin s cos duos ( J) sin(.s TO) cos L&amp;gt;
= sins [cos S cos (a A) cos TO cos D]
H- cos ,s- . sin TO cos D

and :

sin s sin &amp;lt;? sin (,v TO) sin /&amp;gt;
= sin ,s- [sin 5 cos w sin

/&amp;gt;]

-+- coss . sin nt sin D.

Further we have in the spherical triangle between the

pole of the equator and the geocentric places of Venus and
the sun, denoting the angle at the sun by M:

sin TO sin M= cos sin ( A)
sin m cos l/= sin ScosD cos 8 sin D cos (a A) (k)

cos in = sin sin Z) -j- cos $ cos jD cos ( ^J),
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hence we have:

cos cos ( A) = cosD cos in sin D sin m cos M
sin $= sin D cos ?w -+- cosD sin ? cos 3f,

and the equations (&amp;lt;/)

are thus transformed into the following:
sin (h A) cos ft

= sin s sin 7I/

cos (A ^4) cos /?
= cos s cos Z&amp;gt; sin s sin Z) cos M (?)

sin /9
= cos s sin Z) -j- sin s cos Z) cos M,

where s and M must be found by means of the equations

(d) and
(ft). After having obtained A and /? by the equa

tions (i), m is found according to (e) and (/) by means of

the following equation:

cos m = cos m -|-/sin m [cos A cos /? cos y cos -f- sin A cos /? cos 9? sin

-h sin/? sin
&amp;lt;p]= cos m +/sin m [sin &amp;lt;p

sin /? -+- cos y cos /? cos (^ (9)].

Now let T, as before, be that mean time of a certain

first meridian, for which the quantities , r), A and D have

been computed, and L the sidereal time corresponding to it,

further let / be the longitude of the place, to which and

(f refer, taken positive when East, we have:

therefore : I = I L /.

Hence if we put:
A= I L,

cos = sin cp sin 8 -+- cos
&amp;lt;p

cos 8 cos (^/ /),Ti /
&quot;

N
fl \

we have:

COS i s:::5 COS M ~4~/sin WJ COS

All places, for which cos has the same value, see the

same apparent distance m simultaneously at the sidereal time

L of the first meridian, or each place at the local mean time

T -\- I. In order to find the time when these places see the

distance w, we have: dm = fcos,

hence : dt= -
dm
dt

But if m is a small quantity, for instance at the time of

contact of the limbs, we have according to the formulae (4):

m= (a A) cos ^ (8 +- D) sin M-\- (S Z&amp;gt;)
cosM

dm d(aA)
,
d(8D) ..= cos 4- (o -4- D) sin IfH cos M.

dt dt at

or according to the formulae (1?) :
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/cos
hence : dt=--- -

ncos (M N}

Therefore if an observer at the centre of the earth sees

at the time T the angular distance m of the bodies, an ob

server on the surface of the earth sees the same distance at

the time of the first meridian:

_/co^
ncos (If N)

or at the local time:

ncos(M-N)

Therefore in order to find the times of the ingress and

egress for a place on the surface of the earth from the times

of the ingress and egress for the centre of earth, we need

only use R=^=r and instead of m and M
,
and since we

have according to the formulae (E) and (F) for the ingress

O= 180 H- N \j)
and for the egress O= JV-f-i//, we must

add to the times of the ingress and egress for the centre of

the earth: _/cos
n cos y

and: + /ll.
n cos y

Hence if we collect the formulae for computing a transit

of Venus, they are as follows:

For the centre of the earth.

For a time of a certain first meridian, which is near the

time of conjunction, compute the right ascensions
,
A and

the declinations
&amp;lt;?,

D of Venus and the sun, likewise their

semi-diameters r and R. Then compute the formulae:

m sinM= (a A) cos (S -+- D)
mcosM= S D

n sinN= ^~--~y Cos i (8 -h /&amp;gt;)

at

A7 d(8 D}
&amp;gt;tcos N=

.ZV)

T= cos (If N} -- cos
n n

r =-- cos (M jV) H-- cos
n n
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Then the time of ingress is:

and we have for this time:

= 180 -hN ip,

and the time of egress is :

and for this time

For a place whose latitude is y and whose east longitude is I.

Compute for the ingress as well as for the egress, using
the corresponding values of the angle O, the formulae:

7t cos (R =J=
r) p = f sin s

7t sin (R =t=
/) =/cos *

_/_
n cos y

sin (I A) cos ft
= sin s sin

cos (A A) cos ft
= cos s cos D sin s sin D cos

sin ft
= cos s sin D -+- sin s cos Z* cos

A = l L
cos = sin ft sin 90 -f- cos ft cos 90

cos (^/ I) *),

where L is the sidereal time corresponding to t or t . Then

the local mean time of the ingress is:

t 4- I g cos
,

and that of the egress:
t -\- I -t- y cos g.

At those places, for which the quantity

sin ft sin y -j- cos ft cos
9?

cos (A /)

is equal =t= 1, the times of contact are the earliest and the

latest. The duration of the transit for a place on the sur

face may differ by 2g from the duration for the centre, and

since for central transits we have nearly:
n p

&amp;gt;

n&quot;

the difference of the duration can amount to twice the time,

in which Venus on account of her motion relatively to that

of the sun, describes an arc equal to twice the difference of

her parallax and that of the sun. Now since the difference

of the parallaxes is 23&quot; and the hourly motion of Venus at

*) is the angular distance of the point, whose latitude and longitude

are 9?
and /, from the point, whose latitude and longitude are ft and A.
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the time of conjunction is
234&quot;,

the difference of the dura

tion can amount to 12 minutes, whence we see that the dif

ference of the parallaxes of Venus and the sun, and thus

by Keppler s third law the parallax of the sun itself can be

determined with great accuracy.

Example. For the transit of Venus in 1761 June 5 we
have the following places of the sun and of Venus:
Paris m. t. A D a

16&quot;

17h

IS 1

19 h

20h

further :

?r = 29&quot;. 6068 72= 946&quot;. 8

p = 8&quot;. 4408 r= 29&quot;. 0.

In order to find the times of exterior contact for the

centre of the earth, we take:

77=17h
and find:

= - 4 11&quot;.6

17 1&quot;
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If we wish to find then the time of the egress for places
on the surface of the earth, we must first compute the con

stant quantities A, ft and g and find first:

s= 90 22 . 7, log/= 1 . 325G4, log# = 9 . 03764,

and since:

O= 219 19 . 3, Z&amp;gt;
= 22 42 3, ^ = 74 29 . 3,

we obtain:
1= 9 15 . 9

and ^= 45 44 . 4.

Further since 20h 45m 45 s
. 4 Paris mean time corresponds

to I h 45m 34 s .6 sidereal time, we have:

A= 17 7 . 7.

If it is required for instance to find the egress for the

Cape of Good Hope, for which:

/= + lh 4m 33s. 5

and
y&amp;gt;

= 3356
3&quot;,

we find:

log cos = 9 . 94043
, g cos = 4- 5 47&quot; . 0,

and hence the local mean time of the egress :

1 -+- A + g cos = 21h 56m 5 s
. 9.

If we differentiate the equation:

we find, if dT is expressed in seconds:

3600 cosdT= --
d(7C p)

n cos ip

_ 3600 cos np fl
&quot;

n cos
iff /&amp;gt;

so that an error of the assumed value of the parallax of the

sun equal to 0&quot;.13 changes the time of the contact of the

limbs by 5 s
. Conversely any errors of observation will have

only a small effect upon the value of the parallax deduced

from them, and thus this important element can be found

with great accuracy by this method.

5. In order to find the complete equation, to which

any observation of the contact of the limbs leads, we start

from the following equation:

[
- ^l

]

2 cos &amp;lt;?

2 + [S
- Z)

]

2
[JR=t r}\ (&amp;lt;/)

*) Where
;&amp;gt;

is the mean horizontal equatoreal parallax.
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where , A\ 8 and D are the apparent right ascensions and

declinations of the sun and Venus, affected with parallax,
v;

j
-.--,/

and ^ denotes the arithmetical mean . But since the

parallaxes of the two bodies are small and likewise the dif

ferences of the right ascensions and declinations for the times

of contact of the limbs are small quantities, we can take:

ft A = a A-+-(n p) sec 8 cos cp

!

sin ( (9)

8 D = 8 D H- (it p} [cosy sin S cos ( 6&amp;gt;)
sin y cos &amp;lt;?

],

where :

a+ A
.- -j-.

If now we introduce the following auxiliary quantities:

cos
(f

sin ( 6&amp;gt;)

= h sin H
cos cp sin $ cos ( 0} sin

y&amp;gt;

cos S = h cos //,

the equation (a) is transformed into :

[
A+ (n p} h sin //sec #

]

2 cos S 2
-f [5 D + (?r p) // cos //J

2=
[7? =fc r

]

2
.

If then
, J, J, /&amp;gt;, TT, p, /? and r, denote the values which

are taken from the tables, whilst -j-c/, r) -j-c?6, ^-f-^^d,
D ~j- c/D, TT -+- C/TT, p -f- rf/?, jR -j- dR and r -f- dr are the true

values, and dl is the error in the assumed longitude of the

place of observation, the equation must be written in this way :

[a
A -f- (jc /&amp;gt;)

h sin //sec &amp;lt;? -f- d ( J)

-h d(n p} h sin //sec 8 &amp;lt;LL^_) rf/
i _

,7^ 7)^

-h[5 D-i-(7t p)/icos/T+rf(5 /))H-(/(7ir p)hcosH ~^-J

dl]*

If we develop this equation and neglect the squares and

the products of n p and the small increments, and put :

a A-+-(np)h sin //sec &amp;lt;?

= A

L&amp;gt;-i-(7i;p)hcosH =D\
we find:

yl^cosV-h/) 2 CK^r) 2

= 2^ cos
&amp;lt;V

2
d(a A) 2 [^ A sin //cos &amp;lt;? H- /) A cos H]d(7tp)

^^p^ Co S^+D d(8~-
^ at

H- 2 CR =J=

But if we denote:

4l2
C08^ a -hZ) a

by m2
,
and since we have approximately:

,M 2
(# d=

/-)

2 = 2 m
[
Mi (R d= r)l,

25
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we find:

m
[
m (R=r)]= A cos8 *d(a A)D d(8 D )

[A hsmllcos S -\- D h cos H] d(n p)

Therefore if we put again:
A cos $ = m

2) = m cosM
1 d(a A}^ \

3600
C S e

dt
m

( ,

1 d(*-Z
3600 ^&quot;^T

=ncos^

the equation becomes :

,+-(yj
-

n cos (M~)
~

ncos(MN~)
hcs(M--H)np d(R^r)
ncos(M-N) Po

Po ncos(MNY
The difference of longitude dl must be determined by

other observations and thus dl can be taken equal to 0. In

this case all the divisors might be omitted, but if we retain

them, R==r m is expressed in seconds of time, because

we have:

ncos(Jf 7V)= ~y
-

Example. The interior contact at the egress was ob

served at the Cape of Good Hope at

21 h 38 &quot;3
s .3 mean time.

This time corresponds to

20h 33m 29 8 .8 Paris mean time = I h 33 16 s
. 2 Paris sidereal time.

We have therefore:

= 2 1 37 &quot; 49s . 7 = 39 27 25&quot;.

Moreover we have for that time:

= 74 18 28&quot;. 05 =22 29 51&quot;. 32

A = 74 28 46 . 41 - Z)= 22 42 13 .90

a A=- 10 18&quot;. 36 8 D= 12 22&quot;. 58

= 74 23 37&quot;
= 34 56 12&quot; &amp;lt;?

= 22 36 2&quot;

(7tp) Asin//=-h 10&quot;. 07 //=3134 . (n p] k sin H sec ^

(n p)k cos /f=-h 16 .39 log // = 9.95835 =H-10&quot;.90

^ = 10 7&quot;. 46

D = 12 6 .19

M= 217 40 . 7 N= 255 19 . 3

log m== 2.96262 log n= 8.82412.
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Now since:

R r= 917&quot;. 80

and :

/j =8&quot;. 57116,

we find:
- 5.3 = 10.684 d (a A) -+ 14.986 d (8 D)

H- 42.240 dPo -h 18.934 d(R r).

Such an equation of the form:

= n 4- ad (a 4) -f 6d (# Z&amp;gt;)
H- cdp + ed(R r)

is obtained from each observation of an interior contact and

a similar one containing d(B-r-r) from an exterior con

tact, and from a great member of such equations, derived

from observations at different places on the surface of the

earth, the most probable values of dp^ d (a A), d (8 D)
and d (/2 =t= r) can be found by the method of least squares.

In this way Encke *) found by a careful discussion of

all observations made of the transits of Venus in the years

1761 and 1769 the parallax of the sun equal to 8&quot;. 5776.

More recently after the discovery of the original manuscript
of Hell s observations of the transit of 1769 made at Wardoe

in Lapland, he has altered this value a little and gives as

the best value
8&quot;. 57116

When the parallax of the sun is known, that of any
other body, whose distance from the earth, expressed in terms

of the semi -major axis of the earth s orbit as unit, is A, is

found by means of the equation:
8&quot;. 57116

Note 1. Although a great degree of confidence has always been placed

in the value of the parallax of the sun, as determined by Encke, still not

only the theory of the moon and of Venus, but also the recent observations

for determining the parallax of Mars and a new discussion of the transit of

1769 by Powalky, who used for the longitudes of several places of observa-

*) Encke, Entfernung der Sonne von der Erde aus dem Venusdurch-

gang von 1761. Gotha 1822.

Encke, Venusdurchgang von 1769. Gotha 1824.

25*



388 *

tion more correct values than were at Encke s disposal, all seem to indicate,

that this value must be considerably increased.

Note 2. The transits of Mercury are by far less favourable for deter

mining the parallax of the sun. For since the hourly motion of Mercury
at the time of the inferior conjunction is 550&quot;, Avhile the difference of the

parallaxes of Mercury and the sun is
9&quot;,

the coefficient of dp in the equa

tion
(Z&amp;gt;)

in the case of Mercury is to the same coefficient in the case of

Venus as:

23 550

9 234
:

hence G times smaller. Thus an error of observation equal to 5 s
produces

already an error of 0&quot;.S in the parallax of the sun. However on account

of the great excentricity of the orbit of Mercury this ratio can become a

little more favourable, if Mercury at the time of the inferior conjunction is in

its aphelion or at its greatest distance from the sun.



SEVENTH SECTION.

THEORY OF THE ASTRONOMICAL INSTRUMENTS.

Every instrument, with which the position of a heavenly

body with respect to one of the fundamental planes can be

fully determined, represents a system of rectangular co-ordi

nates referred to this fundamental plane. For, such an in

strument consists in its essential parts of two circles, one

of which represents the plane of xy of the system of co-ordi

nates, whilst the other circle perpendicular to it and bearing
the telescope turns around an axis of the instrument perpen
dicular to the first plane and can thus represent all great
circles which are vertical to the plane of xy. If such an

instrument were perfectly correct, the spherical co-ordinates

of any point, towards which the telescope is directed, could

be read off directly on the circles. With every instrument,

however, errors must be presupposed, arising partly from the

manner, in which it is mounted, and partly from the imperfect
execution of the same, and which cause, that the circles of

the instrument do not coincide exactly with the planes of the

co-ordinates, but make a small angle with them. The pro
blem then is, to determine the deviations of the circles of

the instrument from the true planes of co-ordinates, in order

to derive from the co-ordinates observed on the circles the

true values of these co-ordinates.

Besides other errors occur with instruments, arising partly
from the effect of gravity and temperature on the several

parts of the instrument, partly from the imperfect execution

of particular parts, such as the pivots, the graduation of the

circles etc., and means must be had to determine these errors

as far as possible, so as to find from the indications of the
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instrument the true co-ordinates of the heavenly bodies with

the greatest possible approximation.&quot;

Besides these instruments, with which two co-ordinates

of a body perpendicular to each other can be observed, there

are still others, with which only a single co-ordinate or merely
the relative position of two bodies can be observed. With

regard to these instruments likewise the methods must be

learned, by which the true values of the observed angles can

be obtained from the readings.

I. SOME OBJECTS PERTAINING IN GENERAL TO ALL INSTRUMENTS.

A. Use of the spirit-level.

1. The spirit-level serves to find the inclination of a

line to the horizon. It consists of a closed glass tube so

nearly filled with n fluid that only a small space filled with

air remains. Since the upper part of this tube is ground out

into a curve, the air-bubble in every position of the level so

places itself as to occupy the highest point in this curve.

The highest point for the horizontal position of the level is

denoted by zero, and on both sides of this point is arranged
a graduated scale marked off in equal intervals and counting
in both directions from the zero of the scale. If the level

could be placed directly on the line, it would only be ne

cessary, in order to render this line horizontal, to change
its inclination to the horizon, until the centre of the bubble

occupy the highest point, that is, the zero of the scale. Since

however this is not practicable, the glass tube for its better

protection is first firmly fixed in a brass tube which leaves

the graduated scale of the level free, and this tube is itself

placed in a wide brass tube of the whole length of the axis

of the instrument. The upper middle part of this tube is

cut out and covered with a plane glass. In this tube the

other is fastened by means of horizontal and vertical screws

which also serve as adjusting screws, so that the graduated
scale of the level is directly under the plane glass through
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which it can be read oft *). The tube is then provided with

two rectangular supports for placing it upon the pivots or

for the larger instruments with corresponding hooks for sus

pending it on the axis of the instrument. Generally however

these supports or hooks are not of equal length. Let AB
Fig. 1 1 be the level, A C and

BD be the two supports,

whose length is represented

by a and b and suppose
the level to be placed on a

line, which makes with the

horizon an angle ,
in such

a manner, that BD shall stand upon the higher side. Then

will A stand in the height a -f- c and B in the height:

1&amp;gt; H- c -+- L tang a

if L is the length of the level. This is, to be sure, not enti

rely correct, because the supports AC and BD do not stand

perpendicularly to the horizontal line; since however only

small inclinations of a few minutes, generally of a few seconds,

are always here assumed, this approximation suffices perfectly.

If now we call the angle which the line A B makes with the

horizon a?,
then we have:

b a -h L tang a
tango:= -

&amp;gt;

/ J

or
b a

If we reverse the level so that B shall stand on the

lower side and call x the angle, which A B now makes with

the horizon, then we have:

If furthermore we now assume, that the zero has been

marked erroneously on the level and that it stands nearer

to B than to A by A
,
then if the level be placed directly

on a horizontal line, we read / -|- A on the side A, if 21 be

*) This arrangement is adopted in order that the level may be in a com

pletely closed place and not liable to be disturbed in reading off by the warmth

of the observer or of the lamp.
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the length of the bubble, and / I on the side B. Suppose
on the other hand the level to be placed on the line A B,
whose inclination to the horizon is #, then we read on the

side A:
A= l-{-l rx,

where r is the radius of the curve A #, in which the level

has been ground out, on the contrary on the higher side B:

B = ll-\-rx,
If the level with its supports be reversed in such a

manner that B shall stand upon the lower end, we shall read :

If we now substitute for x and x the values already

found, we shall find for the four different readings, denoting
the inequality of the supports expressed in units of the scale

of the level by u:

A= I ra -J- A ru

A = I -+- r a -+- K ru

It is obvious from the above, that the two quantities A

and ru cannot be separated from each other, and that for

the reading off it is one and the same, whether the zero-point
be not in the centre or whether the supports be of unequal

length. On the other hand by the combination of these equa
tions we can find A ru and a.

If the end B of the bubble is on a particular side of

the axis of an instrument, for instance, on the same side as

the circle, which we will call the circle -end, then after the

reversion of the level we shall read on this side A. Now
we have:

B-A
-

(

r / -|- r u -f- r a

A -B- = / ru -i- ra,

therefore : ,B _ A A &amp;gt;_
*

( 2
+ ~2

H \

-

206265,

if we wish to have the inclination directly in seconds of arc.

rpi ,. 206265 .
, T ,1

The quantity is then the

scale expressed in seconds of arc.

The quantity
- is then the value of one unit on the
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Therefore, if we wish to determine the inclination of an

axis of an instrument by means of the level, we place it in

two different positions on the axis and read off both ends

of the bubble in each position. We then subtract the read

ing on the side of the circle from the reading made on the

other side and divide the arithmetical mean of the values

found in both positions by 2. The result is the elevation

of the circle-end of the axis expressed in units of the scale.

Finally if this number be multiplied by the value of the unit

of the scale in seconds of arc, the result will be the eleva

tion of the circle-end in seconds of arc.

If we can assume, that the length of the bubble during
the observation does not change, we have also:

a= U ~ A)
,

T

or:

^^(B-B )

r

i. e. the inclination would be equal to half the movement
of the bubble on a determined end. If finally the level were

perfectly accurate, then we should have A ru = and it

would not be necessary, to reverse the level, but the incli

nation could be derived merely from one position by taking
half the difference of the readings on both ends.

Example. On the prime vertical instrument of the Berlin

observatory the following levelings were made:
Circle - end Circle - end

Object glass East
j

; g g 18 Q j

0bJ ect Sla ss West
j ,

?
^

!

B

-^= -h 3&quot;. 90 -
6&quot;. 3(5

A _B &amp;gt;

* ru = 8&quot;. 80 I ru= 9&quot;. 20___ = 4 ,90 + 2 . 90

-0&quot;.50 ~^rp~7o&quot;

Therefore by the mean of both levelings we have b= 1&quot;. 10,
or since the value of the unit of the scale was equal to

The above supposes, that a tangent which we imagine
drawn to the zero of the level is in the same plane with

the axis of the instrument. In order to obtain this result,

the level must first be so rectified, that this tangent lies in
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a plane parallel to the axis, which is the case, when A rn

equals zero. If this value by the leveling is found to be

equal to zero, then the level is in this sense rectified; if

however, as in the above example, a value different from zero

be found, then the inclination of the level must be so changed

by means of the vertical adjusting screws as to fulfill the

above condition, which will be the case, when A equals

A and B equals J5
,

or when on the side of the circle -end

as well as on the opposite side, the bubble has the same

position before and after the reversion. In the above ex

ample, where A ru is 9^. 00, it would be necessary to change
the inclination of the level, until the bubble in the last position

for Object glass West indicates 11.6 and 14.8. Then we

should have read on the level so rectified:

12.5 13.7 11.4 15.0
Object glass East . Object glass West US

whereby we should have found again the inclinations 0&quot; . 50

and --1&quot;.70, and / ru equal to zero.

If the level has been thus rectified, the tangent to the

zero of the level is in a plane parallel to the axis. If now

the level be turned a little on the axis of the instrument in

such a manner that the hooks always remain closely in con

tact with the pivots, then will the tangent to the zero, if it

is parallel to the axis, also remain parallel when the level is

turned, and the bubble will not change its position by reason

of this movement, If however the tangent in the plane pa

rallel to the axis makes an angle with a line parallel to the

axis, then will the inclination to the axis be changed when

the level is turned, and since the bubble always moves towards

the higher end, the end towards which the bubble moves if

the level is turned towards the observer, is too near the ob

server. This end then must be moved by means of the ho

rizontal adjusting screws, until the bubble preserves its posi

tion unaffected, when the level is turned, in which case the

tangent to the -zero is parallel to the axis. By the motion

of the horizontal screws, however, the level is generally some

what changed in a vertical sense so that ordinarily it will

be necessary to repeat several times both corrections in a
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horizontal and vertical sense, before the perfect parallelism

of the level with the axis of the instrument can be attained.

2. In order to find the value of the unit of the scale in

seconds, the level must be fixed on a vertical circle of an

instrument provided with an arrangement for that purpose,
and then by means of the simultaneous reading of the level

and of the graduated circle, and by repeating the readings in

a somewhat different position of the circle, the number of

units is found, which corresponds to the number of seconds

which the circle has been turned. If the bubble passes

through a divisions, whilst the circle revolves through ft

/?

seconds, then is the value of the unit of the scale in
a

seconds.

In making this investigation however it is best, not to

remove the level from the tube, in which it is enclosed, since

it is to be presumed, that the screws which hold it may
produce a somewhat different curve from that which the level

itself would have without them, and since a large level can

not be well fastened on a circle of tin instrument, it is best

to use for this purpose a special instrument which consists

in its essential parts of a strong T-shaped supporter, which
rests on three screws and on which the level can be placed
in two rectangular Y-pieces, in such a manner, that the di

rection of the level passes through one of the screws and is

perpendicular to the line joining the two other screws. The
first screw is intended for measuring and is therefore care

fully finished and provided with a graduated head and an

index, by which the parts of a revolution of the screw can

be read off. By means of an auxiliary level the apparatus
can be so rectified as to render this screw exactly vertical.

If now the level is read off in one position of the screw

and then again after the screw has been turned a little, the

length of the unit of the scale will be found in parts of

the revolution of the screw. If now we know by exact meas
urement the distance f of the screw from the line joining the

two other screws and the distance h between the threads of the

screw, then will be the tangent of the angle, which cor-
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responds to one revolution of the screw or 206265 be this

angle itself. The perfection of the screw can be easily tested

by observing, whether the bubble always advances an equal

number of units, when the screw is turned the same number

of units of the graduated head. But it is not necessary that

the parts of the scale be really of equal length for the

whole extent of the scale
;

it is only essential that this equa

lity exists for those parts, which are liable to be used

in leveling and which at least in levels, as they are made

now, do not extend far on both sides of the zero. To be

sure the bubble of the level changes its length in heat and

cold on account of the expansion and contraction of the fluid;

but levels are now made so, that there is a small reservoir at

one end of the tube, also partly filled with a fluid, which is

in communication with that in the level through a small

aperture. Then, if the bubble has become too long, the level

can be filled from the reservoir by inclining it so that the

reservoir stands on the elevated side. If on the contrary

the bubble is too short, a portion of the fluid can be drawn

off by inclining the level in the opposite direction. In this

manner the bubble can be always kept very nearly of the

same length, and if care be taken, to have the level always

well rectified and the inclination of the axis small, then only

a very few parts will be necessary for all levelings and

their length can be carefully determined. Besides it would

be well to repeat this determination at very different tempe
ratures in order to ascertain, whether the value of the

unit of the scale changes with the temperature. If such a

dependence is manifest, then the value of the unit of the

level must be expressed by a formula of the form:

l= a +b(t O
where a is the value at a certain temperature ,

and in

which the values of a and b must be determined according

to the method of least squares from the values observed by
different temperatures.

Instead of a special instrument for determining the unit

of the scale an altitude azimuth and a collimator can also

be used, if the latter be so arranged, that two rectangular
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Ys can be fastened to it, in which the level can be placed
so that it is parallel to the axis of the collimator. If then

this collimator be mounted before an altitude instrument with

a finely graduated circle, and the level be placed in the Ys
and read off and likewise the circle, after the wire -cross of

the instrument is brought in coincidence with the wire-cross

of the collimator, and if this process be repeated after the

inclination of the collimator has been somewhat changed by
means of one of the foot -screws, then will the length of

the unit of the scale be determined by comparing the diffe

rence of the two readings of the level with those of the

circle.

Theodolites or altitude and azimuth instruments are

frequently already so arranged, that the length of the unit

of the scale of the level can be determined by means of one

of the foot-screws, which is finely cut for this purpose and is

provided with a graduated head. These instruments rest

namely on three foot-screws which form a equilateral triangle.

If now the level be set upon the horizontal axis of such an

instrument and the axis be so placed, that the direction of

the level shall pass through the screw a provided with the

graduated head and therefore be perpendicular to the line

joining the two other screws, then can the value of the

unit of the scale be determined from the readings of the

screw a and the corresponding motion of the bubble of the

level, when the distance between the threads of the screw as

well as the distance of the screw a from the line joining the

two other screws are known. The value of the unit of the

scale for the level attached to the supports of the micros

copes or the verniers of the vertical circle is determined by
directing the telescope to the wire -cross of a collimator or

to a distant terrestrial object and then reading off both the

circle and the level. If then the inclination of the telescope
to the object be changed by means of the foot-screws of the

instrument, the amount of the inclination in units of the scale

can be read off on the level, whilst the same can be obtained

in seconds by turning the telescope towards the object and

reading off the circle in the new position.
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3. The case hitherto considered, to determine by means
of the level the inclination of a line upon which the level

can be placed, never actually occurs with the instruments,
but the inclination of an axis is always sought which is only

given by a pair of cylindrical pivots on which the level must

be placed. Even if the axis of the cylinders coincides with

the mathematical axis of the instrument, nevertheless the cy
linders may be of different diameters, and in that case a level

placed upon them will not give the inclination of the axis of

the instrument. These pivots always rest on Ys, which are

formed by planes making with each other an angle which

we will denote by 2i. Let the angle of the hooks of the

level, by which it is held on the axis, be 2i and let the

radius of the pivot on one end (for which here again the

F ig. 12. circle-end is taken) be r
,
then will b C

(Fig. 12) or the elevation of the centre

of the pivot above the Y be equal to

r cosec i, likewise we have :

a C= r cosec z
,

hence :

a b = r [cosec i -+- cosec z],

on the other end of the axis we

a 6 = ?-
I [cosec i -f- cosec i],

where rl is the radius of the pivot on

this side. If now the line through the

two Ys makes with the horizon the angle #, then, if the

diameters of the pivots be equal, the same inclination x will

be found by means of the level. If however the pivots are

unequal, then, if x denotes the elevation of the Y of the circle-

end, we will have for the elevation 6 of the circle -end:

I = x H [cosec i -f- cosec z],
.Li

where L is the length of the axis. If however the instru

ment be reversed so that the circle shall now rest on the

lower Y, then will the elevation of the circle-end be:

b = x -h - - --

[cosec i
1

-f- cosec i].

From both equations we derive :
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-
, r- = -
[cosec i 4- cosec tj,

a quantity which remains constant so long as the thickness

of the pivots does not change.
Now since we wish to find by means of the level the

inclination of the mathematical axis of both cylinders, we
must subtract from each b the quantity:

r o r
\ -i

-- cosec i
,

or if
?0 r

be eliminated, the quantity:

(6+ 6 ) cosec i

cosec i 4- cosec i +

or-
4: (6 -+- b ) sin i

^

sin i 4~ sin i

If the correction, as is generally the case, be small,

then we can make i = i *) and we have therefore to apply
to every result of leveling the quantity }(b-^-b ^ in which

b and b denote the level -errors found in the two different

positions of the instrument.

Example. On the prime vertical instrument of the Berlin

Observatory the inclination, that is, the elevation of the circle-

end was found according to No. I. to be b 2&quot;. 06, when
the circle was south. After the reversion of the instrument

the leveling was repeated and the inclination found to be

& ==-- 5&quot;. 02, which value, as before, is the mean of two

levelings by which in one case the object glass of the teles

cope was directed towards tlie east and in the other case

towards the west. In this case therefore is:

\(b 4- 6) = + 0&quot;. 74,

hence the inclination of the mathematical axis of the pivots

was:
=

2&quot;. 80 Circle South

and = H- 4&quot;. 28 Circle North!

Hitherto it has been assumed, that the sections perpen
dicular to the axis of the pivots are exactly circular. If this

is the case, then will the level in every inclination of the

telescope give the same inclination of the axis, and the te

lescope when it is turned round the axis will describe a great

*) Usually i and i are equal to about 90.
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circle. But if this condition be not fulfilled, then will the

inclination be different for different elevations of the telescope
and the telescope, when it is turned round the axis, will de

scribe a kind of zigzag line instead of a great circle. By
means of the level however we can determine the correction

which is to be applied to the inclination in a particular posi
tion in order to obtain the inclination for another position.

When, namely, the instrument is so arranged, that the level

by different elevations of the telescope can be attached to

the axis, then can the inclination of the axis in different pos
itions of the telescope be found, for instance for every 15 th

or 30th

degree of elevation, and only when the telescope is

directed towards the zenith or the nadir will this be impos
sible. If these observations are also made in the other posi

tion of the instrument, then can the inequality of the pivots

or the quantity }(b+ & ) be determined for the different ze

nith distances, and if this be subtracted from the level-error

in the corresponding positions of the telescope, the inclina

tion of the axis for the different zenith distances will be ob

tained. By a comparison of the same with the inclination

found for the horizontal position we can then obtain the cor

rections, which are to be applied to the inclination in the

horizontal position, in order to obtain the inclination for the

other zenith distances. These corrections can be found by
observations for every tenth or thirtieth degree, and from

these values either a periodical series for the correction may
be found, or more simply by 3, graphic construction a curve,

the abscissae of the several points being the zenith distances,

and the ordinates the observed corrections of the inclina

tion. Then for those zenith distances, for which the cor

rection has not been found from observations, it is taken

equal to the ordinate of this curve*).

) The pivots can be examined still better by means of a level, con

structed for that purpose ,
which is placed on the Y in such a manner that

one end rests upon the pivot. If the level is first placed on the pivot at the

circle-end, and read off by different zenith distances of the telescope and then

the mean of the readings in the horizontal position of the telescope is sub

tracted, it is found, how much higher or lower the highest point of the pivot is

than in the horizontal position. These observed differences shall be uz . Now
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B. The vernier and the reading microscope.

4. The vernier has for its object to read and subdivide

the space between any two divisions on a circle of an in

strument, and consists in an arc of a circle, which can be

moved round the centre of &quot;the graduated circle, and which

is divided into equal parts, the number of which is greater

or less than the number of parts which it covers on the

limb. The ratio of these numbers determines how far the

reading by means of the vernier can be carried.

If we have a scale divided into equal parts, each of

which is a, then the distance of any division from the zero

can be given by a multiple of a. If then the zero of the

vernier or the pointer, which we will denote by ?/, coincides

exactly with one division of the limb, its distance from the

zero of the limb is known. But if the zero of the vernier

falls between two divisions of the limb, then some one di

vision of the vernier must coincide with a division of the

limb, at least so nearly that the distance from it is less than

the quantity, which can be read off by means of the vernier.

If the distance of this line of the limb from the zero point of

the vernier be equal to p parts of the vernier, each of which

is
,
then its distance from the zero of the limb will be:

y -+- p a .

But it is also qa-\-pa, where qa is that division of the

limb, which precedes the zero of the vernier, hence we have :

y + 1&amp;gt;

a = q a -+- p ,

and therefore the distance of the zero of the vernier from

the zero of the limb is:

y = qa-}-p (a a )-

If we have : m a = (m 4- 1) ,

that is, if the number of parts on the vernier is greater by

if the same observations are made, when the level is placed on the other

pivot and the values u ,. are obtained, then the line through the highest

points of the pivots will have the same inclination in all the different positions

of the instrument, if u x= u-/.. But if this is not the case, then the quantity

-f 20G265, where L is the length of the axis, gives the difference of
Jj

the inclination in this position of the telescope from that in the horizontal

position.

26
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one than the number which it covers on the limb
,
then we

have : m
a = --

a,m H- 1

therefore : ?/
= H

? -4-1

The quantity
l

is called the least count of the ver

nier. Therefore in order to find the distance of th*e zero of

the vernier from the zero of the limb or to read the instru

ment by means of a vernier: Read the limb in the direction

of the graduation up to the division -line next preceding the

zero point; this is the reading on the limb: look along the

vernier until a line is found, that coincides with one on the

limb; multiply the number of the line by the least count;

this is the reading on the vernier, and the sum of these

two readings is the reading of the instrument.

We see that if we take the number m large enough,
we can make the least count of the vernier as small as we

like. For instance if one degree on the limb of the instru

ment is divided into 6 equal parts, each being therefore 10

minutes, and we wish to carry the reading by means of the

vernier to
10&quot;,

we must divide an arc of the vernier whose

length is equal to 590 in 60 parts, because then we have

--=10&quot;. In order to facilitate the reading of the vernier,m -+- 1

the first line following the zero of the vernier ought to be

marked
10&quot;,

the second 20&quot; etc., but instead of this only the

minutes are marked so that the sixth line is marked 1
,

the

twelfth 2 etc.

In general we find m from the equation:

,
a a

a a = r or m= -

, 1,m 4- 1 a a

taking for a a the least count of the vernier and for a the

interval between two divisions of the limb, both expressed in

terms of the same unit.

Hitherto we have assumed, that:

ma= (m -+- 1) a
,

therefore that the number of parts of the vernier is greater

than the number of parts of the limb, which is covered by
the vernier. But we can arrange the vernier also so, that

the number of its parts is less, taking:

(?&amp;gt;i -J- 1 ) a= m a .
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a
In this case we have : a a=

m

and y = q a p

In this case the vernier must be read in the opposite

direction.

If the length of the vernier is too great or too small by
the quantity A^? then we have in the first case:

m a= (m -f- 1 ) a A I
,

therefore using the same notation as before:

pa ^l

Therefore if the length of the vernier is too great by ^/,

we must add to the reading of the vernier the correction :

p - A/

where p is the number of the division of the vernier which

coincides with a division of the limb and m-f-1 is the num
ber of parts, into which the vernier is divided. For instance

if we have an instrument, whose circle is divided to 10
,
and

which we can read to 10&quot; by means of a vernier, so that

59 parts of the circle are equal to 60 parts of the vernier,

and if we find that the length of the vernier is 5&quot; too great, or

A I= -+- 5&quot;,
we must add the correction ~-

5&quot;. The length

of the vernier can always be examined by means of the di

vision of the limb. For this purpose make the zero of the

vernier coincident successively with different divisions on the

limb, and read the minutes and seconds corresponding to the

last division-line on the vernier. Then the arithmetical mean
of these readings will be equal to the length of the vernier.

5. If great accuracy is required for reading the circles,

the instruments, for instance the meridian circles, are furnished

with reading microscopes, which are firmly fastened either

to the piers, or to the plates to which the Ys are attached,

in such a manner, that they stand perpendicular over the gra
duation of the circles. The reading is accomplished by a mo-

veable wire at the focus of the microscope, which is moved

by means of a micrometer screw whose head is divided into

equal parts, depending upon the extent to which the sub

divisions are to be carried. The zero of the screw head is

26*
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so placed that if the wire coincides with a division -line on

the circle, the reading of the screw head is zero; in this

case the circle is read up to this division -line; hut if the

wire falls between two division -lines of the circle, it is

moved by turning the screw head until it coincides with the

next preceding line on the circle, in which position the head

of the screw is read, and the reading is then the sum of the

reading on the circle and that on the screw head *). Thus

the zero of the screw head corresponds to the zero of the

vernier, since always the distance of the wire in the position

when the reading of the screw is zero from the next prece

ding division-line of the circle is measured by means of the

screw head. The value of one revolution of the screw ex

pressed in seconds of arc is determined beforehand, and since

the number of the entire revolutions of the screw can be read

by a stationary comb -scale within the barrel of the micros

cope, whilst the parts of a revolution are read by means of

the screw head, this distance can always be found. Now it

can always be arranged so that an entire number of revolu

tions is equal to the interval between two division-lines of the

circle, for the object glass of the microscope can be moved
farther from or nearer to the eye -piece, and thus the image
of the space between two lines can be altered and can be

made equal to the space through which the wire is moved

by an entire number of revolutions of the screw. If the screw

performs more than an entire number of revolutions, when the

wire is moved from one division -line to the next, then the

object glass of the microscopes must be brought nearer to

the eye-piece; but since by this operation the image is thrown

oft the plane of the wire, the whole body of the microscope
must be brought nearer to the circle, until the image is again

well defined.

The microscope must be placed so that the wire or the

parallel wires are parallel to the division-lines of the circle,

and that a plane passing through the axis of the microscope
and any radius of the circle is perpendicular to the latter. If

*) It is better to use instead of a single wire two parallel wires and to

bring the division lines of the circle exactly between these wires.
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it is not rectified in this way, the image of a line moves a little

sideways, when the circle is gently pressed with the hand, and

thus errors would arise in reading off the circle, if it should

not be an exact plane or should not be exactly perpendicular
to the axis. If such a motion of the image arising from the

gentle pressure of the hand be observed
,
the tube in which

the object glass is fastened must be turned until a position
is found in which such a pressure has no more effect upon
the image.

Since the distance of the microscope from the circle is

subject to small changes, the error of run, that is the dif

ference between an entire number of revolutions and the meas
ured distance of two division -lines, must be frequently de

termined and the reading of the microscope be corrected ac

cordingly *). But it is not indifferent, which two lines of

the circle are chosen for measuring their distance, since this

can slightly vary 911 account of the errors of division
;
there

fore the exact distance of two certain lines must first be

found and then the run of the microscope always be deter

mined by these two lines.

The micrometer screw itself can be defective so that by
equal parts of a revolution of the screw the wires arc not

moved through equal spaces. In order to determine these

errors of the screw, a short auxiliary line (marked so that

it cannot be mistaken for a division -line) is requisite at a

distance from a division -line, nearly equal to an aliquot part
of the space between two lines, for instance at a distance

of 10&quot; or
15&quot;,

in general at the distance a&quot; so that 120 n a.

If now we turn the micrometer screw to its zero and then by
moving the circle bring the line nearest to the auxiliary line

between the wires, we can bring the latter line between the

The circle of a meridian instrument is usually divided to 2 minutes,
and two revolutions of the screw are equal to the interval between two division

lines. Hence one revolution of the screw is equal to one minute and the head

being divided into 60 parts, each part is one second, whose decimals can be

estimated. In that position of the wires to which the zero of the screw head

corresponds they bisect a little pointer connected with the comb scale, and if

this pointer should be nearer to the following than to the preceding line, then

one minute must be added to the reading on the screw head.
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wires by the motion of the screw and thus measure the dis

tance of the lines by means of the screw. If we leave now
the screw untouched and move the circle, until the first line

is again between the parallel wires, we can again by moving
the screw bring the second line between the wires, and we
can continue this operation, until the screw has made the

two entire revolutions which are always used in reading the

circle*). If then the different values of the distance of the

two lines as measured by the screw are:

from to a a

from a to 2 a a&quot;

from (n 1) to nn
a&quot;,

the last reading on the screw will again be nearly zero, and

hence we can assume, that the mean value of all different

a
,

a&quot; etc. is free from the errors of the screw. These ob

servations must be repeated several times and also be changed
so that the intervals are measured in the opposite direction,

starting from 120 instead of 0, and then the means of all the

several values a
,

a&quot; must be taken. If we put then:

the correction, which must be added to the reading of the

screw, if also the interval from a to and that from na
to (n -f- 1) is measured and the corresponding distances

are denoted by a~ l and o&quot;

+l
,
will be:

for a a -+- a~ l

a a!

2 2 a a&quot;

(?i 1) = (n 1) a a &quot;

~ l

na=

*) If there is no auxiliary line on the circle, the two parallel wires can

be used for this purpose, if their distance is an aliquot part of 2 minutes.

Then, when the screw is turned to its zero point, the circle is moved until

a line coincides with one wire, and then the other wire is placed on the same

line by moving the screw.
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By means of these values the correction for every tenth

second can be easily tabulated and then the values for any
intermediate seconds be found by interpolation. The reading
thus corrected is free from the errors of the screw and gives

the true distance of the wires in the zero -position from the

next preceding line, expressed in parts of the screw head,

each of which is the sixtieth part of a revolution of the

screw, and hence if two entire revolutions of the screw should

differ from 2 minutes, this distance is not yet the distance

expressed in seconds of arc.

Now in order to examine this, two lines on the circle

are chosen, whose distance is known and shall be equal to

120 -I- y. Then after moving the screw to its zero-point we
move the circle until the following one of the two lines is

between the wires and then bring by the motion of the screw

the preceding line between the wires *). If in this position

the corrected reading of the screw is 120-j-p, then the read

ing of the screw, if we had moved it from zero through

exactly 120 seconds, would have been 120-f-p y\ there

fore all readings must be corrected by multiplying them by:
120

1204-/J y

It must still be shown, how the length of an interval

between two certain lines, for instance that between and

2
,
can be found. For this purpose first the length of the

interval in parts of the screw head is found by moving the

circle, after the screw has been turned to its zero, until the

line 2 is between the wires
,
and then moving the latter

by means of the screw, until the line is between them.

The length of the interval expressed in parts of the screw

head shall be from the mean of many observations 120-f-ic. If

then in the same way a large number of intervals at diffe

rent places of the circle are measured, we can assume that

there are among them as many too great as there are too

small, so that the arithmetical mean will be the true value

of an interval equal to
120&quot;, expressed in parts of the screw

*) The reading of the screw increases, when it is turned in the opposite

direction in which the division runs.
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Fig. 13.

head. Now if the mean be 120-f-w, the first interval is too

large by x u = y or is equal to 120-h?/.
The correction, which must be applied to the reading

for this reason, can also be tabulated so that the argument
is the reading on the screw. As long as the error of the

run remains the same, this table can be united with the one
for the corrections of the screw.

C. Errors arising from an excentricity of the circle and errors of division.

6. A cause of error which cannot be avoided with all

astronomical instruments is that the centre round which the

circle or the alhidade carrying the vernier revolves is different

from that of the division. We will assume that C Fig. 13

be the centre of the division,

C that of the alhidade and that

the direction C A or the angle
OCA have been measured equal
to A 0, supposing that the

angles are reckoned from 0.

Then, if the excentricity were

nothing, we should have read

the angle ACO= A C 0. De

noting the radius of the circle

CO by r and the angle ACO=
A C O by A 0, we have:

A P= r sin (A 0) = A C sin (A 0}

and C P= r cos (A
1

O) e= A 1 C cos (A 0) ,

where e denotes the excentricity of the circle.

If we multiply the first equation by cos (A 0), the

second by sin (/! 0) and subtract the second from the

first, we obtain:

A C sin (A 40= sin (A
1

0).

But if we multiply the first by sin (A 0), the second

by cos (A 0) and add them, we find:

A C cos (A A }
= r e cos (A

1

0),

therefore we have:

sin (A
1

0)

tang (A - A }
= -

1 - - cos (A 0)
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or by means of the formula (12) in No. 11 of the intro

duction :

A A = sin (A 0) -h 4 ~ sin 2 (A
1

0}
r

~
r*

e
3

+- 1 -^ sin 3 (A
1

0) -+- . . .

Now since -L is always a very small quantity, the first

term of this series is always sufficient, and hence we find

A A expressed in seconds of arc:

A A = sin (A
1

0) 2062 G5
,

r

whence we see, that the error A A expressed in seconds

can be considerable on account of the large factor 206265,

although
-- is very small.

In order to eliminate this error of the reading causedO

by the excentricity, there are always two verniers or micros

copes opposite each other used for reading the circle. For

if the alhidade consists of two stiff arms, each provided with

a vernier, which may make any angle with each other, the

correction for the reading B by the second vernier would

be similar so that we have:

A = A + sin (A
1

0)
r

and

B= B +-^sin. (B &amp;lt;9),

and hence:

| (A + B) = i (A
1

H- B&quot;) + 4 sin
[ J (A

1

-h B ) 0] cos \ [A
1 B

\.

We see therefore, that in case that the angle between the

arms of the alhidade A B is 180, then the arithmetical

mean of the readings by both verniers is equal to the arith

metical mean which we should have found if the excentricity
had been nothing. For this reason all instruments are fur

nished with two verniers exactly opposite each other, and by

taking the arithmetical mean of the readings, made by these

two verniers, the errors arising from an excentricity of the

circle are entirely avoided.

In order to find the excentricity itself, we will subtract

the two expressions for A and B. Then we get:
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B A = 13 A 4- 2 cos [4 (A
1

4- B ) 0} sin ,1 (B
1 A )

or supposing that the angle between the verniers differs from

180 by the small angle a:

B A = 180 -+- 4- 2 sin (A
1

0)

= 180 4- 4- 2 cos &amp;lt;9 sin J 2 sin cos A .

r r

and 2 sin =
y,

If we take now:
e

r

we obtain:

[XA ]
= 4- z sin A y cos A\

and hence we can find the unknown quantities ,
z and y

by readings at different places of the circle.

Example. With the meridian circle at the Berlin Obser

vatory the following values of B A 180 were observed

for two microscopes opposite each other:

X =4-0&quot;. 3 X,, =4-1&quot;. 5
v i 9 q v

(\
n

-*TA_ 3 Q &quot;&quot;&quot;P&quot;
O O -^\- 210 ~~~~ U . D

X90 =4-3 .1 Xa70 =H-0 .7

-y _ i /tQ &quot;V&quot; O X
-^120 * . O ^-300 . U

From this we find the sum of all these quantities :

hence :

Moreover we find according to No. 27 of the intro

duction :

A XA XA XA XA

4-15.1
4-10.4

-4-2.4 4- 2.4
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7. If a circle is furnished with several pairs of verniers

or microscopes, as it is generally the case, the arithmetical

mean of the readings by two verniers ought always to differ

from the arithmetical mean of the readings by two other

verniers by the same constant quantity, if there were no other

errors besides the excentricity. However since the graduation
itself is not perfectly accurate, this will never be the case.

But, whatever may be the nature of these errors of division,

they can always be represented by a periodical series of

the form:

a -+- a
,
cos A -f- a 2 cos 2 A -f- .....

-f- b
,
sin A -j- 6 2 sin 2 A -f- .....

where A is the reading by a single vernier or microscope.
If now we use i verniers equally distributed over the

circle, then their readings are:

and

and if we now take the mean of all readings, a large num
ber of terms of the periodical series for the errors of divi

sion will be eliminated, as is easily seen, if we develop the

trigonometrical functions of the several angles and make use

of the formulae (1) to (5) in No. 26 of the introduction.

In case that the number of verniers is i, only those

terms remain, which contain i times the Angle. Hence we
see that by using several verniers a large portion of the

errors of division is eliminated, and that therefore it is of

great advantage to use several pairs of verniers or micros

copes.

The errors of division are determined by comparing in

tervals between lines, which are aliquot parts of the circum

ference, with each other. For instance if the errors of divi

sion were to be found for every fifth degree, we should place
two microscopes at a distance of about 5 degrees over the

graduation. Then we should bring by the motion of the

circle the line marked under one microscope, which we
leave untouched during the entire operation, and measure the

distance of the line marked 5 by the micrometer screw of
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the second microscope simply by turning this screw until

that line is between the wires and then reading the head of

the screw. If now we turn the circle until the line 5 is

between the wires of the first microscope, the line 10 will

be under the second microscope and its distance from the

line 5 can be measured in the same way, and this operation
can be continued through the entire circumference, so that

we return to the line and measure its distance from the

line 355. The same operation can be repeated, the circle

being turned in the opposite direction. If then we take the

arithmetical mean of all readings of the screw and denote

it by and the readings for the lines 5, 10 etc. by ,
&quot;

etc., the error of the line 5, taking that of the line as

nothing, will be
,
that of the line 10, 2a a &quot;

etc.

But since the circle undergoes during so long a series chan

ges by the change of temperature, it is better, to determine

the errors of the several lines in this way, that first the errors

of a few lines, for instance those of the lines and 180,
be determined with the utmost accuracy, and then relying

upon these
,

the errors of the lines 90 and 270 &quot; be deter

mined by dividing the arcs of 180 into two equal parts;
and then by dividing the arcs of 90 again into two or

three equal parts and going on in the same way, the errors

of the intermediate lines are found. Small arcs of 1 degree or

2 degrees may even be divided into five or six equal parts,
but for larger ancs it is always preferable to divide them

only into two equal parts. These operations can be quickly

performed and for the sake of greater accuracy be repeated
several times.

In order to make this examination of the graduation, two

microscopes are requisite which can be placed at any dis

tance from each other over the graduation. For small in

tervals, for instance of one degree, one microscope with a

divided object glass can be conveniently used. Before the

operation is begun, the microscopes must of course be rec

tified according to No. 5, and it is best, to use always the

same microscope for measuring and to arrange the observa

tions even so, that always the same portion of the micro

meter screw is used for these measurements. This end can
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always be attained, if at the beginning of each series the

screw of that microscope which is merely used as a Zero is

suitably changed.

Example. For the examination of the graduation of the

Ann Arbor meridian circle two microscopes were first placed
at a distance of 180. When the line was placed under

the first microscope, the reading of the second microscope
after being set at the line 180, was 17&quot;. 9; but when the

line 180 was brought under the first microscope, then the read

ing of the other for the division -line was 2&quot;. 7. Hence
the mean is 10&quot;. 3 and the error of the line 180 is 7&quot;. 60.

The mean of 10 observations gave +7&quot;. 61, which value was

adopted as the error of that line. In order to find the er

rors of the lines 90 and
270&quot;,

the arcs to 180 and 180

to were divided into two equal parts by placing the two

microscopes at a distance of 90. If then the line was

brought under the first microscope, the reading of the second

microscope for the line 90 was --6&quot;. 5, whilst when the

line 90 was brought under the first microscope, the reading
of the second microscope for the line 180 was 3&quot;. 5 and,
if this be corrected for the error of that line, -f- 4&quot;. 11.

The arithmetical mean of 6&quot;. 5 and -+-4&quot;. 11 gives 1&quot;. 19,

hence the error of the line 90 is -f-5&quot;.31. In a like man
ner the errors of the lines 45, 135, 225 and 315 were
determined by dividing the arcs of 90 into two equal parts.
Then the errors for the arcs of 15 might have been de

termined by dividing the arcs of 45 degrees into three equal

parts. But .since the microscopes of the instrument cannot

be placed so near each other, arcs of 315 and 225 were di

vided into three equal parts. For this purpose the micros

copes were first placed at a distance of 105 degrees. When
the lines 0, 105 and 210&quot; were in succession brought under
the fixed microscope, the readings of the second microscope
were respectively -11&quot;.9, 5&quot;. 6 and -j-2&quot;.0 or if we add
to the last reading the error of the line 315, which was
found

0&quot;.48, we get -11&quot;. 9, 5&quot;. 6 and -f-l&quot;.2. The
arithmetical mean of all is -5 &quot;.33, hence the error of

the line 105 &quot;

is +6&quot;. 57, that of the line 210 is equal to
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2cr a
&quot;=

-f-6&quot;. 84. If the first line which we use is

not the line but another line, whose error has been found

before, the first reading must be corrected also by applying
this error with the opposite sign. For instance when the

first microscope was set in succession at the lines
90&quot;,

195

and
300&quot;,

the readings of the second microscope for the lines

195, 300 and 45&quot; were successively 6&quot;.6, H-2&quot;.l and 7&quot;.9.

Now since the errors of the lines 90&quot; and 45&quot; have been found

to be H-5&quot;.46 and -+-3&quot;.36, the corrected readings are
12&quot;.06,

+ 2&quot;. 10 and --4&quot;. 54. The mean is 4&quot;. 83, and hence the

error of the line 195 is 4- 7&quot;. 23, and that of 300&quot; is 4-0&quot;.30.

The errors thus found are the sum of the errors of di

vision and of those caused by the excentricity of the circle

and by the irregularities of the pivots; finally they contain

also the flexure, that is, those changes of the distance between

the division-lines produced by the action of the force of gravity
on the circle. The errors produced by the latter cause will

change according to the position of a line with respect to

the vertical line, so that the correction which must be applied
to the reading for this reason will be expressed by a series

of the form:

a coss-h b s\n z -\- a&quot; cos 2s -+ 6&quot; sin 2z -+- a&quot; cos 3 z -h b
&quot;

sin 3z -+- . . .

where the coefficients of the sines and cosines are different

for each line and change according to the distance of the line

from a fixed line of the circle. We see therefore, that if a

line is in succession at the distance z and 180&quot; -t-z from the

zenith, all odd terms of the series are in those two cases

equal but have opposite signs. Therefore if we measure the

distance between two lines first in a position of the circle, in

which the zenith distance of that line is z and afterwards in

the opposite position, in which its zenith distance is 180-f-3,
then the mean of the measured distances is nearly free from

flexure and only those terms dependent on 2s, 4z etc. re

main in the result. If we repeat the observations in 4 po
sitions of the circle, 90 different from each other, then only
the terms dependent on 4s, 8z&amp;gt; remain in the arithmetical

mean. Generally already the second terms will be very small,

and hence the mean of two values for the distance between
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two lines determined in two opposite positions of the circle

can be considered as free from flexure *).

The errors arising from the excentricity are destroyed,

if the arithmetical means of the errors of two opposite lines

are taken, and the same is the case with the errors caused

by an imperfect form of the pivots. For such deficiencies

have only this effect, that the error of excentricity is a little

different in different positions of the instrument, since when

the instrument is turned round the axis, the centre of the

division occupies different positions with respect to the Ys**).

If the circle is furnished with 4 microscopes, as is usually

the case, the arithmetical means of the errors of every four

lines which are at distances of 90 from each other are taken

and used as the corrections which are to be applied to the

arithmetical mean of the readings by the 4 microscopes in

order to free it from the errors of division.

By the method given above, the errors of every degree
of the graduation and even of the arcs of 30 may be de

termined. If a regularity is perceptible in these corrections,

at least a portion of them can be represented by a series

of the form a cos 4 3 -f- ft sin4^-ha 1 cos8s-+-6 1
sin 8s etc. and

thus the periodical errors of division are obtained which can

be tabulated. But the accidental errors of the lines must be

found by subdividing the arcs of half a degree into smaller

ones according to the above method, and since this would

be an immense labor if excecuted for all lines, Hansen has

proposed a peculiar construction of the circle and the micros-

*) Bessel in No. 577, 578, 579 of the Astron. Nachr. has inves

tigated the effect of the force of gravity on a circle in a theoretical way and

has found for the change of the distance between two lines the expression

a cos z -+- b sin z. However the case of a perfectly homogeneous circle, which

he considered, will hardly ever occur. Usually the higher powers of the ex

pression for flexure will be very small, but it is always advisable, to examine

this by a special investigation.

**) The errors arising from the excentricity of the circle and from the

irregularities of the pivots are of the form :

[e H- e cos z -+- e&quot; sin z -+ e 2 cos 2z -+- e&quot; 2 sin 2r] sin (A 0,),

where A is the reading of the circle, z the zenith distance of the zero of

the circle, and Oz the direction of the line through the centre of the division

and that of the axis, which is likewise a function of z.
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copes, for which the number of lines, whose errors must be

determined, is greatly diminished. (Astron. Nachr. No. 388

and 389.) The determination of these errors will always be

of great importance for those lines, which are used for the

determination of the latitude, the declination of the standard

stars and the observations of the sun
;
and after the errors

for arcs of half a degree have been obtained, the errors of

the intermediate lines of any such arc can be found by meas

uring all intervals of 2 minutes by means of the screw of

the microscope. For this purpose we turn the screw of the

microscope to its zero, then bring by the motion of the circle

the line of a degree between the wires and measure the dis

tance of the next line by means of the screw. After this

the screw is turned back to its zero and when the same line

has been brought between the wires by turning the circle,

the distance of the following line is measured and so on to

the next line of half a degree. These measurements are also

made in the opposite direction, and the means taken of the

values found for the same intervals by the two^ series of ob

servation. Then if x and x are the errors of division of the

first and the last line, and
,

a&quot; etc. are the observed inter

vals between the first and the second, the second and the

third line etc., we have:

+ a &quot;

.+. a
&amp;gt;

_f_ . . . .+- x
&amp;gt;

x

15

equal to an interval of 2 minutes as measured by the screw,

and hence the error of the line following the degree line is:

/

x H- a

that of the second x -+- 2 a a&quot;

that of the third x -+- 3a a a&quot;

&quot;

and so forth.

Compare on the determination of the errors of division:

Bessel, Konigsberger Beobachtungen Bd. I und VII, also

Astronomische Nacbrichten No. 841. Struve, Astronomische

Nachrichten No. 344 and 345, and Observ. Astron. Dorpat.

Vol. VI sive novae seriae Vol. Ill; Peters, Bestimmung der

Theilungsfehler des Ertelschen Verticalkreises der Pulkowaer

Sternwarte.



417

D. On flexure or the action of the force of gravity upon the telescope

and the circle.

8. The force of gravity alters the figure of a circle in

a vertical position. If we imagine the point, from which

the division is reckoned, to be directed to the zenith, every

line of the graduation will be a little displaced with respect

to the zero, and for a certain line A the produced displa

cement shall be denoted by . If now we turn the circle

so that its zero has the zenith distance a, that is so that

the line z of the graduation is directed towards the zenith,

the displacement of the line A will be different from .

If we denote by a^
the displacement of the line A, when the

zero has the zenith distance
,
which shall be reckoned in

the same direction from to 360, then
ctg

can be expressed

by a periodical series of the following form:

a cos -h a&quot; cos 2 -+- a
&quot;

cos 3 + ...

-f- // sin -+- b&quot; sin 2 -f- b&quot; sin 3 -f- ...

But if we take now another line, the displacement of

it will be expressed by a similar series, in which only the

coefficients a
,

b etc. will have different values. These coef

ficients themselves can thus be expressed by periodical series,

depending on the reading of the circle, so that the displa

cement of any line u of the graduation ,
when the zero has

the zenith distance c, can be expressed by a periodical series

of the form:

a ,, cos -f- a&quot;u cos 2 -f-
&quot;

cos 3 -f- . . .

H- b tl sin -4- 6&quot;,, sin 2 -h &
&quot;

sin 3 4- . . .
,

where a
,
b u etc. are periodical functions of u. The sign

of this expression shall be taken so, that the correction given

by the expression is to be applied to the reading of the circle

in order to fret it from flexure.

Now a complete reading of the instrument is the arith

metical mean of the readings of the different microscopes,
the number of which is usually 4. These microscopes we
will suppose to be so placed, that one of them indicates 0,
when the telescope is directed to the zenith. The zenith

distance of this microscope which always gives the zenith

distance of the telescope shall be denoted by m. If now the

27
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telescope is turned so that it is directed to the zenith dis

tance a, the line z will be under this microscope, and since

in this case the zenith distance of the zero is z -+- m, we
have in this case u= z, C,

= 3-f-m; hence the correction

which is to be applied to the reading of the microscope, is:

a x cos (z 4- m) 4- a&quot; ,. cos 2 (z -+- m) -+- a &quot;* cos 3 (z 4- ni) +- . . .

4- //, sin (2 4- ?n) 4- &&quot;* sin 2 (2 H- m) 4- &&quot; * sin 3 (2 -f- ?&amp;gt;0 4- . . .

For the other microscope, whose reading is 90 -f- a, we
have w = 90 -|- s, c = 3-r-w; hence the coefficients in the

expression for flexure become a ^^-, 690+ 5 etc. and thus we

see, that when we use four microscopes at a distance of 90

from each other, and take the mean of all 4 readings, then

we have to apply to this mean the correction:

. cos (2 4- + &quot;

cos 2 (.2 4- m) 4- a &quot;, cos 3 (2 + ;w) 4- . . .

4- , sin (z 4- ?) -+- ^ &quot;. sin 2 (2 + m) -+- /? &quot;* sin 3 (2 -f- + ,

where the several a and /? are periodical functions of a, but

contain only terms in which 4z, 82 etc. occur, since all the

other terms are eliminated by taking the mean of four read

ings. If these terms should be equal to zero, then the force

of gravity has no effect at all on the arithmetical mean of

the readings of four microscopes; otherwise there exists flex

ure, and since m is constant, the expression for the correc

tion which is to be applied to the mean of the readings of

4 microscopes will have the form:

a cos 2 4- a&quot; cos 2 2 -+- a
&quot;

cos oz 4- . . .

4- b sin z 4- 6&quot; sin 2 z -+- b&quot; sin 3 z 4- . . .

But the force of gravity acts also on the tube of the

telescope, bending down both ends of it, except when it is

in a vertical position. If the flexure at both ends is the same

so that the centre of the object glass is lowered exactly as

much as the centre of the wire-cross, it is evident, that it

has no influence at all upon the observations, since in that

case the line joining those two centres (the line of collima-

tioii) remains parallel to a certain fixed line of the circle.

But if the flexure at both ends is different, the line of colli-

mation changes its position with respect to a fixed line of

the circle, and hence the angles, through which the line of

collimation moves, do not correspond to the angles as given

by the readings of the circle. The correction which is to
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be applied on this account to the readings can again be ex

pressed by a periodical function, and hence we may assume,
that the expression (A) represents these two kinds of flexure,

that of the circle and that of the telescope.

There are two methods of arranging the observations in

such a manner, that the result is free from flexure, at least

from the greatest portion of it. For if we observe a star

at the zenith distance *, its image reflected from an artificial

horizon will be seen at the zenith distance 180 z, hence

the division -lines corresponding to these zenith distances will

be under that microscope, whose reading gives the zenith

distance. Now if we reverse the instrument, the division of

the circle runs in the opposite direction, and hence the read

ing for the direct observation is now 360 z and that for

the reflected observation 180 -4- z. Therefore if we denote

the four complete readings, corrected for the errors of division,

for those four observations by 3, ,
5&quot; and 3

&quot;,

and by the

true zenith distance free from flexure, we have the following
four equations, in which N denotes the nadir point:
Direct = .2 + a cos z -f- a&quot; cos 2z -f- a&quot; cos 3z -f- .. -+- b sin z

Reflected 180 = * a cos z -f- a&quot; cos 2 z. a&quot; cos 3 z -+-..-+- b
1

sin z

-
&&quot;sin2*-h 6

&quot;

sin 3z . . (180+iV) -ha a&quot;+a
&quot;

Direct 360&quot;
&amp;gt;

= z H- cos z 4- a&quot; cos 2z-f- a
&quot;

cos 3z-f- .. b sin z (B
-

&&quot;sin2z b &quot;sm3z.. (lSQ+N)-i-a a&quot;-{-a&quot;

Reflected 180 -+-=2&quot; a cos z -+- a&quot; cos 2.z a&quot; cos 3z -f- . . b sin z

H- b&quot;sm2z b
1 &quot;

sin 3z 4- . . (180+^) 4- a a&quot;-f-a &quot;.

From these equations we obtain:

90 =-- - a cos s a&quot; cos 3s . . b&quot; sin 2* . . .

+ cos * + &quot;

cos 3* - . .
-

6&quot; sin 2* - . . .
,

hence by taking the mean :

and we see therefore, that if a star is observed direct and
reflected in both positions of the instrument, only that por
tion of flexure, which is expressed by the terms b&quot; sin 2*

) The correction which is to be applied to the nadir point is namely- a -f- a&quot; a
&quot;

-f- . .

27*
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-}-//
v sin4a etc. remains in the mean of those four obser

vations.

We obtain also from the mean of the first two equations (JB):

90 ==
--~|~

~
-h a&quot; cos 2.c -f- . . 4- 6 sin 2 + b

&quot;

sin 3^+ ...

likewise:
jj .

^/;;

270 = H
1-

-f-
&quot;

cos 2c -+ . . V sin z b
&quot;

sin 3z . . .

- (180 -i-N ) -h a a&quot; +
&quot;,

from which we find:

6 sin ~ ~~ 2 6
&quot;

sin 3 z + + N~ N&amp;gt; -

Therefore if we observe different stars direct and re

flected in both positions of the instrument, we can find from

those equations the most probable values of the coefficients

a&quot;,
a lv

etc. and &
,
b

&quot;

etc.

Since these observations are made on different days, it

is of course necessary to reduce the zenith distances 3, a
,

z&quot;

and a
&quot;

to the same epoch, for instance to the beginning of

the year by applying to the reading of the circle the reduc

tion to the apparent place with the proper sign. Since, be

sides, the microscopes change continually their position with

respect to the circle, it is also necessary, to determine the

zenith or nadir point after each observation (VII, 24) and

thus to eliminate the change of the microscopes. Another

correction is required for the reflected observations. For if

we observe a star reflected, we strictly do not observe the

star from the place where the instrument stands, but from

that in which the artificial horizon stands, and thus the lat

itude of the place for those observations is different. Now
since the artificial horizon is placed in the prolongation of

the axis of the telescope, its distance from the point vertically

below the centre of the telescope will be h tang a, where h

is the height of the axis of the instrument above the artificial

horizon. Since an arc of the meridian equal to a toise cor

responds to a change of latitude equal to 0&quot;.063, we must add

to the zenith distance of the reflected image of the star, if h

is expressed in Paris feet, the quantity 0&quot;.011 h tang a.
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A second method of eliminating the flexure was pro

posed by Hansen and requires a peculiar construction of the

telescope. The tube of the telescope, namely, is made in such

a manner, that the heads, in which the object glass and the

eye -piece are fastened, can be taken of and their places be

exchanged, without changing the distance off the centres of

gravity of both ends of the tube from the axis of the instru

ment. Thus in exchanging the object glass and the eye-piece
the equilibrium is not at all disturbed and it can be assumed,
that the effect of the force of gravity on the telescope is the

same in both cases. Now if in one case the line 180&quot; of

the circle is directed to the nadir, and the reading of one

microscope is the zenith distance, then in the other case the

line will correspond to the nadir, and the reading of the

same microscope will be 180-f- the zenith distance. There

fore if f is the zenith distance free from flexure, and if the

readings corrected for the errors of division are in the first

case 3, and in the other 3
,
we have:

= z H- a
1

cos z -f- a&quot; cos 2 z -f- a
&quot;

cos 3 z -+- ...-}-// sin z

-h&&quot;sin2?-h&&quot; sin3z. . . (180 -h N) + + &quot;

..

= * a cos z -h a&quot; cos 2z a
&quot;

cos 3.c; -h ... b sin z

-f- b&quot;sin2z b &quot;sm3z. . . (180 -hiV ) a a
&quot;

a
&quot;

..

Therefore we obtain from the mean of those two equa

tions, denoting the zenith points 180 -f- IV and 180 -f- IV by
Z and Z :

Q

whence we see that the arithmetical mean of the zenith dis

tances in the two cases contains only that portion of flex

ure, which is expressed by the terms dependent on 2z, 4 z etc.

We also obtain by subtracting the above equations:

hence we see, that we can determine the coefficients of the

terms dependent on 2, 3 2, etc. by observing stars at various

zenith distances or by means of a collimator placed at va

rious zenith distances.

In general we can find these coefficients by placing the

telescope in two positions which differ exactly 180. In order



422

to accomplish this, we mount two collimators so, that their

axes produced pass through the centre of the axis of the in

strument, and direct them towards each other through aper

tures, made for this purpose in the cube of the axis of the

instrument, so that the centres of their wire-crosses coincide.

Then the telescope being directed first to the wire-cross of one

collimator and then to that of the other, will describe exactly
180. Hence if we read the circle in the two positions of

the telescope, and denote the true zenith distance of the col

limator by ,
we have in one position:

= 2 4- a cos z -+- a&quot; cos 2 z -+- a
&quot;

cos 3 z -f- ... -f- ft sinz 4- b&quot; sin 2z

-h b
&quot;

sin 3z + ... Z -+- a a&quot; -+- a
&quot;

and in the other position:

180-t-=2 a cos z-+- a&quot; cos 2z a
&quot;

cos 82 -+-... b sin z + b&quot; sin 2 2

- b
&quot;

sin 3z+ . . . Z H- a a&quot; -+- a
&quot;,

therefore :

=
--g

a cos z a&quot; cos 3.z ... b sin z b&quot; sin 3 2 ...

Since we use in reading the circle both times the same

division -lines, the observed quantity * z is entirely free

from the errors of division. If we make these observations

by different inclinations of the telescope, that is, at different

zenith distances, we obtain a number of such equations, from

which we can find the most probable values of the coeffi

cients.

There is no difficulty in making these observations when
the telescope is in a horizontal position; but when the incli

nation is considerable, it would become necessary to place

one of the collimators very high, in which case it might be

difficult to give it a firm stand. However one can use in

stead of this collimator a plane mirror which is placed at

some distance in front of the object glass or better held by
an arm, which is fastened to the pier of the instrument so

that by turning this arm it may easily be placed in any posi
tion *). If then outside of the eye-piece of the lower colli

mator a plane glass is fastened at an angle of 45**), by

*) The mirror must admit of a motion by which it can be placed so

that a horizontal line in its plane is perpendicular to the axis of the telescope.

**) This plane glass must be fixed so, that one can change its incli

nation to the eye -piece and that it can be moved around the axis of the
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means of which, light is reflected into the telescope and which,

while it is not used, can be turned off, and if the telescope

of the collimator is directed to the mirror, then looking into

the telescope through this plane glass we see not only the

wire-cross of the collimator but also its image reflected from

the mirror. Hence by turning the collimator, until the wire-

cross and the reflected image coincide, we place its axis per

pendicular to the mirror. If then we place by the same means

the telescope of the instrument perpendicular to the mirror,

and afterwards direct it to the wire-cross of the collimator, the

angle, through which the telescope is turned, will be exactly

180, and hence we can find, as before, those terms of the

expression for the flexure, which depend upon 3, 3s, etc.

It is best to make these observations in a dark room and to

reflect the light from a lamp into the telescope, since then

the reflected images of the wires are better seen. The only

difficulty will be, to find a plane mirror which will bear a

high magnifying power. But since it need not be larger than

the aperture of the collimator, it will not be impossible, to

excecute such a mirror, especially as it is used only for rays

falling upon it perpendicularly.
The coefficients of the terms dependent upon the cosines

can be determined also by observing the zenith distances of

objects in both positions of the circle, and for this purpose

again either a collimator or the mirror described above can

be used. We find namely from the first and the third of

the equations (#):

180=- Z
~i-a cosz-i-a&quot;cos2z-\-a&quot; cos3z+...+ a a&quot;-f-a

&quot;,

2i

where Z= 180-1- IV, Z =180-}-/V
;

and where z and a&quot; are

the readings in both positions, corrected for the errors of

division.

We thus see, that all coefficients can be determined by

simple observations, except those of the sines of even mul

tiples of a. In order to find these, we must have means to

telescope so as to reflect the light well towards the mirror. It is also better,

to use for these observations an eye -piece with one lens only, since then

the reflected image of the wire -cross is better seen.
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turn the telescope exactly through certain angles different

from 90 or 180. There is no contrivance known by which
the telescope may be turned any desired angle ;

but by means
of the mirror described before and of two collimators the

telescope may be placed at the zenith distance of 45
,
and

thus at least the coefficient b&quot; may be determined. In order

to do this, the mirror is placed so, that the telescope, when
directed to it, has nearly the zenith distance 135, and in this

position of the mirror, a small telescope is placed above the

mirror and directed towards the nadir, while a collimator is

placed horizontal in front of it. Both telescopes are placed
so that their axes are directed to the centre of the mirror,
and this can be accomplished by putting covers with a small

hole at the centre over the object glasses, and likewise co

vering all but the central part of the mirror, and then moving
the two telescopes until the light from the uncovered portion
of the mirror is reflected into the telescopes. When this is

done, the mirror is turned away, and the line of collimation

of the vertical telescope is made exactly vertical by means
of an artificial horizon, whilst that of the collimator is made

exactly horizontal by means of a level. Then the angle between

the lines of collimation of the two telescopes will be a right

angle. If now the mirror is turned back to its original place,
there is one position of it, in which rays coming from the

wire -cross of one collimator are reflected from the mirror

into the other telescope so that its image coincides with

the wire -cross of that telescope, and when this is the case,

the angle which the mirror makes with the vertical line is

exactly 45. A small correction is to be applied also in this

case on account of the different latitude of the places of the

collimators. If y is the small angle, which the vertical col

limator makes with the vertical line of the instrument, and x
the angle, which the horizontal collimator makes with the

horizon of the instrument, then the angle which tjie telescope,

when directed to the mirror, makes with the line towards the

nadir is:

45 H-T(* y),

if we assume, that the two collimators are placed on different

sides of the instrument
;
and if we denote by h and h the dis-
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tance of the horizontal and the vertical collimator from the

vertical line of the instrument, and if we further denote by 6

the inclination of the horizontal collimator as found by means

of the level, taken positive when the side nearer to the in

strument is the higher one, then this angle will be :

45 -f- 0&quot;.0052 (h //) -+- j b.

If we denote this angle by f, and the two readings of

the circle when the telescope is directed to the nadir point

and to the mirror, that is, for the zenith distance 180 and

135, by z and .3, we have:

= z z a (l 4-J/2) -f- a&quot; a
1 &quot;

(I -+- ]/ 2) & |/ 2 -f- b&quot; 6
&quot;^ 1/2.

If we make now the^same observation, when the zenith

distance of the telescope is 225, and if we denote again the

nadir point by z and by z&quot; the reading of the circle, when
the telescope is directed to the mirror, then we have in this

case:

e=z&quot; s + a (liyya&quot;+a &quot;(l + $V2) b
f W2 + b&quot; b &quot;iy2,

therefore we have:

4(: + )
= 2 &quot;~ 2

-& ^2-H&&quot;-& &quot;*l/2...,

provided that the nadir point is the same for both obser

vations.

E. On the examination of the micrometer screws.

9. The measurement of the distance of two points by
means of a micrometer screw presupposes that the linear

motion of the screw and the micrometrical apparatus moved

by it, for instance that of the wire, is proportional to the

indications of the head of the screw and of the scale, by
which the entire revolutions of the screw are indicated. Ho
wever this condition is never rigorously fulfilled, since not

only the threads of the screw are not exactly equal for dif

ferent parts, and hence cause that the amount of the linear

motion produced by an entire revolution varies, but also

equal parts of the same revolution move the wire over dif

ferent spaces. It has been shown already, how the irregu

larities of the screws of the reading microscopes can be deter

mined, but since in that case only very few threads of the
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screw are really used in measuring, the case shall be treated

now, when the entire length of the screw is employed.
The corrections which must be applied to the readings

of the screw head, in order to find from them the true linear

motion of the screw, can again be represented by a perio
dical series of the form:

a, cos u -f- b
l
sin u -+ 2 cos 2u -f- b 2 sin 2u -f- .

where u is the reading of the screw head. These corrections

will be nearly the same for several successive threads, so

that the coefficients a x ,
b l etc. can be considered to be equal

for them. Hence these coefficients are determined from the

mean of the observations made for several successive threads,
and these determinations are repeated for different portions
of the screw.

If we measure the linear distance between two points,

whose true value is f (for instance, the distance between two

wires of a collimator) by bisecting each point by the moveable

wire of the micrometer, then, if u and u are the indications

of the screw for those positions of the moveable wire, we
have:

/== u u -f- a, (cos u cosw) -f- 6, (sinw sin w) -{- a 2 (cos2w cos2)
H- 6 2 (sin 2 u sin 2u) H- . . .

Now if the distance is an aliquot part of a revolution,

and we measure the same distance by different parts of the

screw arranging the observations so, that first we read Or
. 00,

when the moveable wire bisects one point, the next time

O r
.10, then Or .20 and so on through one entire revolution

of the screw, then, if these coefficients are small, as is

usually the case, we can assume, that f is equal to the arith

metical mean of all observed values of u M
,
and we can

take u -j- f instead of u . Therefore if we denote this arith

metical mean -by /&quot;, every observed value of u u gives an

equation of the form:

u u /= 2a, sin ^/sin (u +- /) 2 6, sin 4-/cos (M -f- /)

-+- 2 2 sin / sin (2 u -}-/) 2 6 2 sin / cos ( 2 u -+ /)

and since we have ten such equations, because we suppose
that the screw has made one entire revolution, we find the

following equations :
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10 a, sin 4/= *S(u . u /) sin (u 4- J/)

10 6, .sin 4-/= 2(u M /) cos (u 4- 1/)
10 a 2 sin /= 2(u u /) sin (2u +/)
10 6 2 sin /= 2 (V M /) cos (2 M 4-/) ,

from which we can determine the values of the coefficients.

Example. Bessel measured by the micrometer screw of

the heliometer the distance between two objects, which was

nearly equal to half a revolution of a screw, in the way just

described, and found from the mean of the observations made
on ten successive threads of the screw:*)

Measured distance u u

Starting point 0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

. 50045

. 49690

. 49440

. 49240

. 49260

. 49555

. 49905

. 50140

. 50340

. 50350

/== . 497965= 179 16 . 0.

From this we find :

u u f

4- . 002485
-

. 001065
-

. 003565

-0.005565
-

. 005365
-

. 002415

4-0.001085
H- . 003435

4- . 005435

4- . 005535

( /) sin (

4- . 002485
-

. 000865

-0.001123
4-0.001686

4- . 004320

4-0.002415
-

. 000882
-

. 001083

4-0.001646

4- . 004457

sum 4-0.013056,

and since sin | f= 1
,
we have :

10 ,== 4- 0.013056
as: 106, = 0.024874

0. 1 28 2
= 4- 0.000147

0.128 6 2
= + 0.000337.

*) Astronomische Untersuchungen Bd. 1, pag. 79.
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Bessel made then a similar series of observations by
measuring a distance, which was nearly equal to one fourth

of one revolution and found:

7. 335) a, = -|- 0.015915
7.339 &, = 0.016126

9. 970 a, = 0.004987
9 . 970 b o = . 000576,

and from these two determinations he obtained according to

Note 2 to No. 24 of the introduction:

, =4-0 . 001608

b
i
= .002386

2
= .000499

ft a
= .000057.

These periodical corrections of the screw must be ap

plied to all readings of the screw head. But the observations

can also be arranged in such a manner that these periodical

errors are entirely eliminated. For, if we measure the same

distance first, when the indication of the screw at the bi

section of one object is O r .25 and then again, when the

reading is -4-0 . 25 at the bisection of the same object, so

that u for these two observations is equal to 90 and +90,
then in the expression for f the terms a t (cos?/ cos?/)

-t-61 (sin?/ sin M) will be in one case-f-ctj cosw -+-6 (sin?/+l)
and in the other case a^ cos u b l (sin u -+- 1), and hence

this portion of the correction, dependent on a
l
and b l) will

be eliminated by taking the arithmetical mean of both ob

servations. Likewise the result will be free from that por
tion of the correction dependent on r/, 6, nr 2 and 6 2 ,

if we
take the mean of 5 observations, arranging them so that the

reading of the screw for the bisection of one object is in

succession O r
.4, ^-O r

.2, 0, -f-0
r .2 and -hOr

.4.

Now in order to examine
,
whether the threads of the

screw are equal, we must measure the same distance, which

is nearly equal to one revolution of the screw or to a mul

tiple of it, by different parts of the screw, and it will be best

to arrange these observations in the manner just described

in order that the periodical errors may be eliminated.

Bessel measured by the same screw a distance between

two points nearly equal to ten revolutions of the screw, the
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indications of the scale at the bisection of one point being
in succession O r

,
10 r

,
20r

,
etc. Thus he found:

Reading of the scale at the beginning (X 10.0142

10 20.0147

20 30.0131

30 40.0122

40 50.0107

etc.,

where each value is the mean of 5 observations, for instance

the second value that of five observations made when the in

dications of the scale were 9 r
.6, 9 r

.8, 10, 10.2 and 10.4.

If now the true distance is 10 r

-\-x, and the corrections

of the screw for the readings of the scnle 10, 20, etc. are

AIM Am etc - then we have, since we can take
/&quot;

0:

Xl = H- o . 0142 +/i
X} =H-0.0147H-/20 /10

*, = + 0.013H-/30 -/20

etc.

Likewise he measured a distance, which was equal to

20r-H#2 ,
in the same way and obtained thus another system

of equations:
a: 2 =-h/o
x 2 =H-/40 f., Q

etc.

Similar systems were obtained by measuring a distance

equal to 30 H- #
:! ,

and from all these equations he found the

values of #, #2 , x.^ etc. as well as the corrections of the

screw for the readings 10, 20, etc., that is, /&quot;10 , /2 ,
etc.

II. THE ALTITUDE AND AZIMUTH INSTRUMENT.

10. One circle of the altitude and azimuth instrument

represents the plane of the horizon and must therefore be

exactly horizontal. Therefore it rests on a tripod by whose
screws its position with respect to the true horizon can be

adjusted by means of a level, as will be shown afterwards.

But since this adjustment is hardly ever perfect, we will

suppose that the circle has still a small inclination to the

horizon. Let therefore P be the pole of this circle of the
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instrument, whilst the pole of the true horizon is the zenith Z,

and let i be the angle, which the plane of the circle makes

with the plane of the horizon, and whose measure is the arc

of the great circle between P and Z. In the centre of this

circle, which has a graduation, is a short conical axis car

rying another circle to which the verniers are attached. On
the circle stand two pillars of equal length, which are fur

nished at their top with Ys, one of which can be raised or

lowered by means of a screw. On these Ys rest the pivots

of the horizontal axis supporting the telescope and the ver

tical circle. The concentrical circle carrying the verniers

can be firmly connected with the Y, but the telescope and

the graduated circle are turning with the horizontal axis.

Since also the vernier circle turns about a vertical axis, the

telescope can be directed to any object, and the spherical

co-ordinates of it can be obtained from the indications of

the circles. We will denote by i the angle, which the line

through both Ys makes with the horizontal circle, and by K
the point, in which this line produced beyond that end on

which the circle is, intersects the celestial sphere. The al

titude of this point shall be denoted by 6. Now since only
differences of azimuth are measured by this instrument (if

we set aside at present the observations with the vertical

circle) it will be indifferent, from what point we begin to

reckon the azimuth, and since the points P and Z remain

the same, though K moves through 360 degrees if the vernier

circle is turned on its axis, we can choose as zero of the

azimuth that reading, which corresponds to the position the

instrument has, when K is on the same vertical circle with

P and Z. We will denote this reading by a . For any other

position we will suppose that we read always .that point of

the circle, in which the arc PK intersects the plane of the

circle, and this is allowable, because the difference of this

point and the point indicated by the zero of the vernier is

always constant. The azimuth reckoned in the horizon, but

from the same zero, shall be denoted by A.

If now wre imagine three rectangular axes of co-ordi

nates
,
one of which is vertical to the plane of the horizon,

whilst the two others are in the plane of the horizon so that
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the axis of y is directed to the zero of the azimuth, adopted

above, then the co-ordinates of the point K referred to these

axes will be :

z= sin b
, y= cos b cos A

and x= cos b sin A.

Moreover the co-ordinates of K referred to three rect

angular axes, one of which is perpendicular to the horizontal

plane of the instrument, whilst the two others are situated

in this plane so that the axis of x coincides with the same

axis in the former system, are :

z= sin i
, y == cos i cos (a ) ,

x= cos i sin (a a ).

Now since the axis of z in the first system makes with

the axis of z of the other system the angle ,
we have ac

cording to the formulae (1) for the transformation of co-or

dinates :

sin b = cos i sin i sin i cos i cos (a )

cos b sin A = cos i sin (a )

cos b cos A = sin i sin i -f- cos i cos i cos ( ).

We can obtain these equations also from the triangle
between the zenith Z, the pole of the horizontal circle P and

the point /f, whose sides PZ, PK and ZK are respectively

i, 90 i and 90&quot; b
,

whilst the angles opposite the sides

PK and ZK are A and 180 (a a,,).

Now since 6, i and i are small quantities, if the in

strument is nearly adjusted, we can write unity instead of

the cosine and the arc instead of the sine, and thus we obtain:

b = i cos (a ) (a)

A= a a .

The telescope is perpendicular to the horizontal axis.

The line of collimation ought also to be perpendicular to this

axis, but we will assume, that this is not the case, but that

it makes the angle 90 -he with the side of the axis towards

the circle. The angle c is called the error of collimation.

It can be corrected by means of screws which move the

wire -cross in a direction perpendicular to the line of col

limation.

The telescope shall be directed to the point 0, whose
zenith distance and azimuth are z and e, and whose co-or

dinates with respect to the axes of z and y are therefore

cos z and sin z cos e. Now we will suppose that the division
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increases from the left to the right, that is, in the direction

of the azimuth. Therefore if the circle -end be on the left

side, the telescope is directed to an azimuth greater than that

of the point /if; and hence if we suppose, that the axis of y
is turned so that it lies in the same vertical circle with

/if,

the co-ordinates will then be: cos z and sin z cos (e A).
This is true, when the circle is on the left side, whilst we
must take A e instead of e A, when the circle is on the

right side. If further we imagine the point to be referred

to a system of axes, of which the axes x and y are in the

plane of the instrument, the axis of y being directed to the

point K, then the co-ordinate y of the point is equal to

-sine, and since the angle between the axes of z of the

two systems is 6, we have according to the formulae for the

transformation of co-ordinates:

sin c= cos z sin b -+- sin z cos b cos (e A).

We can find this equation also from the triangle between

the zenith Z, the point K and the point 0, towards which

the telescope is directed. The sides ZO, ZK and OK are

respectively equal to z, 90 b and 90-f-c, and the angle
KZO is equal to PZ PZK= e A.

Since b and c are small quantities, we obtain:

c == b cos z -f- sin z cos (e J.),

or finally, substituting for A its value from the equations (a) :

= c -(- b cos z 4- sin z cos [e (a a )].

Hence it follows, that

cos [e (a a )]

is a small quantity of the same order as b and c. Therefore

if we write instead of it:

sin [1)0 e-\-(a )],

we can take the arc instead of the sine and obtain:

= c -+- 6 cos z -h sin z
[

(JO e -f- (a Q )].

This formula is true, as was stated before, when the

circle is on the left side. If it is on the right side, we must

take A e instead of e A and we obtain then:

= c 4- b cos z + sin z
[

(JO (a a ) + c].

Therefore we obtain the true azimuth e by means of

the formulae:
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e= a a -+-
1JO -f-

- 4- b cotang z Circle left
sin 2

and:

e= a 90 -.--- 6 cotang z Circle right,
sin z

and if we call A the azimuth as indicated by the vernier, and

A A the index error of the vernier, so that A-+-&A is the

azimuth reckoned on the circle from the zero of azimuth,
then we have:

c= A -+- &A^=c cosec z =*= b cotang z,

where the upper sign must be used, when the circle is on

the left side and the lower one, when the circle is on the

right side.

Fig.it. 11. We can find these formulae also by a

geometrical method. Let AB Fig. 14 be the vert

ical circle of the object and Z the zenith. If we
assume now that the telescope turns round an axis,

whose inclination to the horizon is ft, it will de

scribe a vertical circle which passes through the

points A and B and the point Z whose distance

from the zenith is equal to b. Therefore while we
read the azimuth of the vertical circle A Z, the tel

escope will be directed to a point on the great
circle A Z B

, say 0, and hence, when the circle

is on the left side, we shall find the azimuth too

small. Now we have:

sin O = sin A sin b

= cos z . sin b.

But we read the angle at Z subtended by ,
and there

fore the angle Z is the sought correction A A of the azi

muth. Now since:

sin = sin Z sin A A,
and hence :

sin A A = cotang z sin b,

we must add to the reading of the circle on account of the

error 6, when the circle is left:

-t- l&amp;gt; cotang z.

In a similar way we can find the correction for the er

ror of collimation. Let AB again be the vertical circle, which

the line of collimation of the telescope would describe, if

28
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FL&amp;gt;. is. there were no error of collimation. But if the

angle between this line and the side of the axis

towards the circle be 90 -f- c, the line of colli

mation will describe, when the telescope is turned

around, the surface of a cone, which intersects the

sphere of the heavens in a small circle, wrhose dis

tance from the great circle AB is equal to c. Fig. 15.

In this case the reading of the circle is again too

small, when the circle is on the left, and if we
denote again the angle AZO by A .4, we have:

sin c
SIM &A =

sin z

or :

&A= H- c cosec ~.

12. It shall now be shown, how the errors of the in

strument can be determined.

The level-error is found according to the rules given in

No. 1 of this section by placing a spirit-level upon the pi

vots of the horizontal axis. But we have according to the

equation (a) in No. 10:

b = i i cos (a ),

where i is the inclination of the horizontal circle to the hor

izon, i the inclination of the horizontal axis, which carries

the telescope, to the horizontal circle. This equation con

tains three unknown quantities, namely i
,

i and
(1 ,
and hence

three levelings in different positions of the axis will be suf

ficient for their determination. We will assume that the in

clination b is found by means of the level in a certain posi

tion of the axis, when the reading of the circle is a, then

it is best, to find also the inclinations b L and 62 in two other

positions of the instrument corresponding to the readings

a-j-120&quot; and a-f-140. For if we substitute these values in

the above formula, develop the cosines and remember that:

cos 120 = ^

and
sin 120 = +

cos 240 =
moreover :

and
sin 240 = 4-1 o,

we obtain the following three equations:



435

b = i { cos (a a )

b
i

= i -+- 4-
i cos (a ) -+- \ i sin (a ) ]/ 3

6 2
= i -+- ^ i cos (a a n ) 1 1 sin (a a,,) J

7 3.

If we add these three equations, we find:

i _ ?LAI A&amp;gt;

3&quot;

But if we subtract the third equation from the second,
we obtain:

. -

f
v b

l
b 9

i sm (a a )
=

,7~^
V &quot;

and if we add the two last equations and subtract the first

after being multiplied by 2, we find:

, , 2b
i cos (a )

= -

5o

Therefore if we level the axis in three positions of the

instrument, which are 120 apart, we find by means of these

formulae, i, i and a
,
and then we obtain the inclination for

any other position by means of the formula:

b = i i cos (a ).

Iii order to find the collimation- error, the same distant

terrestrial object must be observed both, when the axis is

on the left, as well, when it is on the right, and the circle

be read each time. If the reading in the first case is a, that

in the second case a
,
we shall have the two equations:

G= A H- i\A -+- b cotang z -f- c coscc z

e= A -\- &A b cotang z c cosec z,

from which we find:

A A b + b
c cosec z ~~aT~ 9 cotang z.

Therefore if the inclinations b and b in both positions

are known and we get the zenith distance from the reading
of the vertical circle, we can find the collimation -error by

observing the same object in both positions of the instrument.

It is assumed here, that the telescope is fastened to the

centre of the axis or that, if this is not the case, a very
distant object has been observed. Otherwise we must apply
a correction to the collimation -error, as found by the above

method. For, if we observe the object Fig. 16 with a

telescope, which is fastened to one extremity of the axis, it

is seen in the direction OF. The angle OFK shall be 90-J-cy .

28*
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Now if we imagine a telescope

at the centre M of the axis, and

directed to 0, then the angle
OMK will be 90 -he. We have

therefore :

c= ,
:o -hJ/0F.

But we have :

tang 3/0 F=
-y

where d is the distance of the ob

ject OJH, and o is half the length

of the axis, and hence, if c
()

is very small, we get:

-- cosec c,

Therefore if we observe a terrestrial object with an in

strument whose telescope is at one extremity of the axis, the

reading of the circle will be too small by the
quantity-^-

cosec z,

when the circle is on the left, and too large, when the circle

is on the right side. Therefore if these two readings be de

noted by A and A\ we have the two equations:

e= A -+- &A -\- 1) cotang z -

e = A -\- A A 6 cotang z I

from which we can find the collimation-error, if d is known.

If the telescope is attached to one extremity of the axis,

its weight can produce a flexure of the axis, which renders

the collimation-error variable with the zenith distance. When
the telescope is horizontal, the flexure has no influence on

the collimation-error, since it merely lowers the line of col

limation, but leaves it parallel to the position it would have,

if there were no flexure. But when the telescope is vertical,

the flexure increases the angle, which the line of collimation

makes with the axis. Hence the collimation-error in this

case can be expressed by the formula c -h a cos z. In order

to find c and a, the error of collimation must be determined

in the vertical as well as in the horizontal position of the

telescope (See No. 22 of this section).
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If no terrestrial object can be used for finding the col-

limation- error, it may be determined by observations of the

pole-star. For, if we observe the pole-star at the time t,

read the circle and then reverse the instrument and observe

the pole-star a second time at the time t\ we shall have the

two equations :

e = A -f- A^4 -f- b cotang z -f- c cosec z

and
e = A -{- &A b cotang z c cosec 2,

and since we have:

where denotes the change of the azimuth at the time --
,

we obtain:
A A dA t t

2 ~~dt ~2~

Finally, in order to find the index error &A, we observe

again a star, whose place is known, for instance the pole-

star and read the circle. If then the hour angle of the star

is
, we compute the true azimuth e by means of the for

mulae :

sin z sin e= cos sin t

sin z cos e= cos
y&amp;gt;

sin -\- sin
cp

cos 8 cos t,

and we obtain :

{\A = e A=f= b cotang z =p c cosec z,

where A is the reading of the circle and where the upper

sign is used, when the circle is on the left side, the lower

sign, when it is on the right side.

13. If the instrument serves only for observing the azi

muth, it is called a theodolite. But often the vertical circle

of such an instrument has also a fine graduation so that it

can be used for observing altitudes as well as azimuths. In

this case the vernier -circle is clamped to the Y, whilst the

graduated circle is attached to the horizontal axis and turns

with it. Such an instrument is directed to an object and the

vertical circle having been read in this position, it is turned 180

in azimuth and again directed to the same object. If then we
subtract the reading in the second position from that in the

first position or conversely, according to the direction in which

the division increases, half the difference of these readings
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will be the zenith distance of the object or more strictly its

distance from the point denoted before by P. But this pre

supposes, that the angles i and i as well as the error of

collimation are equal to 0. Now we can assume again, that

the reading of the circle indicates always the point, where

a plane perpendicular to the circle and passing through the

line of collimation, intersects the circle. Then the telescope
will be directed to P, when the great circles K and KP coin

cide. (Compare No. 10 of this section.)

When the line of collimation is turned from here to

point 0, the telescope will describe the angle PKO, but the

side PO will be the measure of this angle only in case that

OP and PK are 90. On the contrary, if these sides are equal
to 90 -+- c and 90 i\ we have, denoting PO by and

the reading of the circle, that is, the angle PRO by f:

cos = sin c sin i -+- cos c cos i cos

= cos (t -f- c) cos ^
- cos (i c) sin 4

2
.

If we subtract cos from both members and write ( C) sin

instead of cos cose ,
which is allowable, because f

is small, we obtain:

== -+- sin k (c -+- i )
3

cotg 4 % sin \ (i c)
2

tang g

or:

= H
9 cotg -I- i c cosec

;

C is then the zenith distance referred to the pole of the in

strument P. But if P does not coincide with the zenith, it

is not yet the true zenith distance. However in this case

all is the same as before, with this difference, that instead

of using the inclination i of the horizontal axis of the in

strument to the horizontal circle, we must take its inclination

to the horizon, that is:

i i cos (a ..)
= &

and besides, we must subtract from the reading of the vert

ical circle the projection of PZ on the circle or the angle
PKZ= isin(a a,,). This angle is always found by means

of a spirit-level attached to the vertical circle. If we denote

by p the reading of the level on that side, on which the di

vision, starting from the highest point, increases, and that

on the opposite side by w, and finally the point of the circle,
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corresponding to the middle of the bubble, by Z, then the

zenith point of the circle will be in one position of the in

strument Z-f-|(/? w) an(l in the other Z-i-$(p -
). There

fore if we denote the readings in the two positions by and

\, then the zenith distance in one position will be:

-Z (p rie,

where e expresses the value of one part of the scale of

the level in seconds, and we shall have in the other position:

and hence we find from the arithmetical mean the zenith

distance :

+ n) e H- j (p
~

n) s_~ ~~

&quot;2

~

2

and in order to obtain from this the true zenith distance,

we must add the correction:

Hh sin I (b + c)
2
cotg 3 sin 4- (b c)

2

tang 4 z

or:

-+- cotgz -f- be cosec 2 .

If we take 6= 0, since we have it always in our power
to make this error small, we have simply to add:

C
&quot;

H-
-Q- cotang z .

If, for instance, c= 10
,
we find

^-
= 0&quot;.87. Therefore

if z is a small angle, that is, if the object is near the zenith,

this correction can become very considerable. In case there

fore that the zenith distances are less than 45
,
we must

always take care that we observe the object at the middle

of the field, that is, as near as possible to the wire -cross.

14. We can deduce the formulae for all other instru

ments from the formulae for the azimuth and altitude in

strument. An equatoreal differs from this instrument only

so far as its fundamental plane is that of the equator, whilst

for the other instrument it was that of the horizon. There

fore if we simply substitute for the quantities which are re

ferred to the horizon, the corresponding quantities with re

spect to the equator, we find immediately the formulae for

the equatoreal. The quantity a will then be the reading of

the hour circle, i will be the inclination of the axis, which



440

carries the telescope, to the hour circle which should be parallel

to the equator. Further i will be the inclination of the hour

circle to the equator, and 90 -f- c is again the angle, which

the line of collimation of the telescope makes with the axis.

We can also easily find the formulae for those instru

ments, which serve for making only observations in a certain

plane. For instance, the transit instrument, is used only in

the plane of the meridian, therefore for this instrument the

quantity a # -f-90
() must always be very small. Denoting

the small quantity by which it differs from zero, by &, the

formulae given in No. 10 are changed into:

e= k -f- b cotang z -+- c cosec z Circle left

e= k b cotang z c cosec z Circle right.

When e is not equal to zero, the body will not be ob

served exactly in the plane of the meridian, and if e has a

negative value, it will be observed before the culmination.

Now let r be the time which is to be added to the time of

observation in order to find the time of culmination, then r

is the hour angle of the body at the time of observation,

taken positive on the east side of the meridian. Now since :

sins
sin T= sin e . ^

cos o

sins
or: r== e. ,

COS

the formulae given above change into :

and :

cos z sin z
_, .

, , , N
b 5 -FA csectf Circle left (east)
COS O COS

T = 4- 6 *-\~k ~*-+- c sec 3 Circle right (west),
cos o cos o

These are the formulae for the transit instrument. The

quantity b denotes now the inclination of the horizontal axis

to the horizon, and k is the azimuth of the instrument, taken

positive when east of the meridian.

In a similar way the formulae for the prime vertical in

strument are deduced. We have, namely, according to No. 7

of the first section:

cotang A sin t= cos
y&amp;gt; tang 8 -f- sin (f cos t

or, if we reckon the azimuth e from the prime vertical, so

that 4 = 90 -he:

tang e . sin t= cos
(f tang sin

&amp;lt;f

cos t.
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Now if (*) is the time at which the star is on the prime

vertical, we have:

= cos
y&amp;gt;
tang sin (p cos

and if we subtract both equations:

tang e sin t= 2 sin
cp

sin 4- (t 0} sin \(t-\r &)

From this we find, if e is small and therefore t is nearly

equal to 6*:

e = (t 0) sin y
or:

= t -.
sm

&amp;lt;p

If we substitute here fore the expression found before:

e= k =t= b cotang z == c cosec z,

we obtain the following formulae for the prime vertical in

strument :

k cotaner z cosec z= + - =p 6 =F c
sin y sin y sm

9?

The direct deduction of these formulae will be given for

each instrument in the sequel.

III. THE EQUATOREAL.

15. As the altitude and azimuth instrument corresponds
to the first system of co-ordinates, that of the altitudes and

azimuths, so the equatoreal corresponds to the second system,
that of the hour angles and declinations. With this instru

ment therefore that circle, which with the other was horizon

tal, is parallel to the equator. Now let P be the pole of

the heavens, /7 that of the hour circle of the instrument.

Further let k be the arc of the great circle between those

two points, and h the hour angle of the pole of the instru

ment. Finally let i be the angle, which the axis carrying
the declination circle (the declination axis) makes with the

hour circle, and let K be the point, in which this axis, pro
duced beyond the end on which the circle is, intersects the

sphere of the heavens, and finally let D be the declination

of this point. As zero of the hour angle we will take again
at first that reading of the hour circle, which w^e obtain, when

/f, P and // are on the same declination circle. And we
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will assume that every other reading gives us that point of

the circle, in which it is intersected by the great circle pas

sing through P and //. This point differs from the reading
of. the circle only by a constant quantity. Let the hour

angle reckoned on the true equator, but from the same zero,
be T.

If now we imagine again three rectangular axes of co

ordinates, of which one is perpendicular to the plane of the

true equator, whilst the other two are situated in the plane
of the equator so, that the axis of y is directed to the adopted
zero of the hour angle ,

then the three co-ordinates of the

point /f, referred to these axes, are:

z == sin D, y = cos D cos T, x= cos D sin T.

Further, the co-ordinates of If, referred to three rect

angular axes, one of which is perpendicular to the hour circle

of the instrument, whilst the other two are situated in its

plane ,
the axis of x coinciding with that of the former sys

tem, are:

2= sini
, y = cos i cos (t &amp;lt;),

x = cosi sin(i J ).

Now since the axes of z of these two systems make
with each other the angle A, we have the following equations:

sin D = cos A sin i sin A cos i cos (t ? )

cos D sin T cos i sin (t ^ )

cos D cos T sin A sin i .-+- cos h cos i cos (t ? ).

Since A, i and D are small quantities, if the instrument

is nearly rectified, we obtain:

D = i I cos (t O
T=t-t .

The telescope is attached to the declination axis and we
will assume, that the part of its line of collirnation towards

the object-glass makes with the side of the axis, on which

the circle is, the angle 90 -f- c, c being called the collima-

tion-error. Now if the telescope be directed to a point, whose

declination is &amp;lt;) and whose hour angle, reckoned from the

adopted zero, is r,, then the co-ordinates of this point will be:

z= sin $, y = cos cos r
l
and x= cos sin r

x
.

We will assume, that the division of the circle in

creases in the direction from south towards west from

to 360 or from O h to 24 h
. Therefore if the circle-end is



443

west of the telescope, the latter is directed towards a point,

whose hour angle is less than that of the point K. There

fore if we imagine the axis of y to be turned so that it lies

in the same declination circle with /if, if the telescope is di

rected to the object, then the co-ordinates will be:

z= sin
, y= cos 8 cos (T T^, x = cos 8 sin (T TJ).

On the contrary, when the circle-end is east of the teles

cope, these co-ordinates will be :

z sin 8, y= cos S cos (TJ 7&quot;),
x = cos 8 sin (T t T}.

If now we refer the place of the point 0, towards which

the telescope is directed, to a system of axes, of which the

axis of y is parallel to the declination axis of the instrument

and hence directed to A
,
whilst the axis of x coincides with

the corresponding axis of the former system, then the three

co-ordinates of the point will be, 8 denoting the reading
of the declination circle:

z= sirt 8 cos c, y= sin c

and
X= COS 8 COS C.

Now since the axes of z of the two systems make with

each other the angle J9, we have:

sin c= cos 8 cos (T t T} cos D -f- sin 8 sin Z),

or

c= cos 8 cos (T ! T} -f- D . sin 8,

and hence, if we substitute for D and T the values found

before :

c= [i /I cos (t t Q )] sin 8 -f- cos 8 cos [r x (t )J.

From this it follows, that:

is a small quantity. Therefore if we write:

sin [90 T, +(* * )]

instead of

cos [TI (t Z )J,

we can take the arc instead of the sine and we find the true

hour angle:
r

,
= 90 -{-(t &amp;lt; ) A cos (t C tang J-M tang 8 -+- c sec (?,

when the circle-end is east of the telescope, and:

Tl =(t Z ) 90 -h A cos
(&amp;lt;

* ) tang &amp;lt;? i tang c sec S,

when the circle-end is west of the telescope.
If we add h to both members of these equations, we
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reckon the angles from the meridian. Then r l -j- h will be

the true hour angle reckoned from the meridian and:

A-h* * -H90&quot;

and A-H t t 90

are the hour angles, as given by the instrument in the two

positions. Therefore if we introduce the reading of the circle

and call it t\ and the index error A*, we have:

r = t -+- A t I sin [t -+- i\t h] tang 8 == c sec &amp;lt;?
=t= { tang ,

or: T = z -f-A* Asin (T A) tang d== c sec 5 =1= i
1

tang #,

where the upper sign is used, when the circle-end is west, the

lower one, when it is east.

We can also find these equations and the corresponding
ones for the declination from the spherical triangle between

the pole of the heavens P, the pole of the instrument //

and the point 0, towards which the telescope is directed, in

connection with the other triangle formed by //, and
/if,

that is, the point in which the declination axis produced in

tersects the sphere of the heavens.

The sides of the first triangle OP, OH and P If are

respectirely the true polar distance 90 S of the point to

wards which the telescope is directed, the distance from the

pole of the instrument 90 &amp;lt;)

,
and /, whilst the angles opposite

the two first sides are 180 (r ti)
and r

/i, where T h

is the hour angle, referred to the meridian of the instrument,

and TI h the hour angle referred to the pole of the instru

ment and reckoned from the meridian of the instrument.

Hence we have the rigorous equations:

cos cos (r A) = sin 8 sin A -j- cos S cos A cos (r A)

cos S sin (r A) = cos S sin (r
1

A)

sin S = sin cos A cos sin / cos (T A) ,

from which we obtain in case that A is a small quantity :

T ==T /, tang S sin (T A)

= ;LCOS(T A).

But r and d are only then equal to the readings of the

circle, when i and c as well as the index error of the ver

nier are equal to zero. First it is evident, that the angle

90&quot; d&quot; t\d obtained by the reading of the declination

circle (where A^ is the index error of the declination

circle) is equal to the angle at K in the triangle 77KO. The

angle S/70, S being a point on the great circle P/7, is
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T h
;

the reading of the instrument is the angle between

the position of UK at the time of observation and that, in

which TIP coincides with IIS. If the above conditions were

fulfilled, this angle would be r A, whilst the angle S/1K
would be 90 -|-r A, when the axis is west, and T h 90,
when the axis is east of the telescope. If for the general
case we denote the latter angle by 90 -|- r&quot;

- - k -+- At
and r&quot; /* -h &t --

90&quot;,
then the angle ILK will be

equal to 90 -J- r&quot; -+- A t *&quot;

,
when the axis is west and

T (V -j-A^ 90), when the axis is east of the telescope,
or equal to 90=p(r ?;&quot; AO- Now since the opposite side

in the triangle is 90 -+- c, and since the side // 0, opposite the

angle 90&quot; &amp;lt;T

A&amp;lt;?,
is90 &amp;lt;*

,
and ///T=90 i

,
we have:

cos 8 cos (r T&quot; A i)
= cos c cos (&quot; -h A #) ,

=J= cos &amp;lt;? sin (T T&quot; A = sin c cos i&quot; cos c sin z sin
(8&quot; -f- A#),

sin $ = sin c sin i -|~ cos c cos z sin
(8&quot; -f- A $),

from which we obtain:

T = T&quot; -h A =F c- sec
(S&quot; -h A d) =F / tang (&amp;lt;T -H A 5),

and in the same way as in No. 13 of this section:

8 = 8&quot; -h A 8 sin (i -h e)
2
tang [45 H- | (&quot; 4- A 8)]

or also &amp;lt;?

=
5&quot; -f- &S 1

(i
--
1

4- c
2
) tang (5&quot; -h A&amp;lt;?)

i c sec
(5&quot; -f- A$),

and substituting these expressions in the equations above,
we find:

T = r&quot; 4- A * ^ tang $ sin (T /&amp;gt;) =p c sec $ =^= i tang $

^= S&quot; 4- A&amp;lt;?
/I cos (T

;

A) i (t&quot;

- -h c
2
) tang 5 z&quot; c sec ^,

where the upper sign must be taken, when the axis is west,
the lower one, when it is east. The last equation is true,
when the divison of the circle increases in the direction of

the declination, otherwise we have:

&amp;lt;?
= 360

8&quot;, & I cos (r A) ft
2
-f- c

2
) tang 8 i c sec 5.

W. It shall now be shown, how the errors of the in

strument can be determined by observations. First we find

from the two last equations for d:

Afl=lSO (V i +5&quot;),

and hence we see, that the index error of the declination

circle can be found by directing the telescope in both posi
tions of the instrument to the same object. As such we can

choose either a star in the neighbourhood of the meridian, or
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the pole-star, for then the change of the apparent declination

during the interval between the observations will be insigni

ficant.

The errors i and c can be determined by observing two

stars, of which one is near the pole, the other near the

equator, each being observed in both positions of the instru

ment. We have namely for each star the two equations:
r =. T -h ^r 1 sin (r h) tang -f- i tang -f- c sec d,

when the circle is east, and:

T! = T
J -+- AT A sin (T } h} tang i tang S c sec 8,

when the circle is west. Therefore if the interval between

the two observations is short so that rT r is a small

quantity, we obtain, denoting the sidereal times of the two

observations by and 6^:

i tang B -\- c. sec 8=

and from this equation and the similar one which is deduced

from the observations of the second star, the values of the

unknown quantities i and c can be found.

When the errors i and c have thus been determined

as well as the index error /\
&amp;lt;Y,

then the errors A and h as

well as the index error /\ are found by the observations of

two stars whose places are known. For, if we assume that

the readings are corrected for the errors i and c and for

the index error
A&amp;lt;^?

we have:

T= r -f- A t ^ sin (r K) tang 8

and likewise for the second star:

r
t

= T
! -+- i\t Asin(rj //) tang x

From these equations we easily find :

&quot;Vj-f-r ~1 3 8 -

(&amp;lt;?i
8 ^

A sin h
\

=
. T r ,

A COS -
9

*- w
v cos

2

and from these the values of h and A can be obtained.
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The index error /\t is then found by means of one of
the equations for r or T I .

Since all the quantities obtained by the readings of the

circles are affected with refraction, we must understand by
r, r19 d and l also the apparent hour angles and declina

tions affected with refraction. But if the observations are

not taken very near the horizon, we can use the simple ex

pression :

d h= a cotang h,

for computing the refraction, and then we obtain the cor

responding changes of the hour angle and declination by
means of the formulae:

,
sinat= a cotang k .

-- _

coso

d = -+- a cotang // . cos p,

where p is the parallactic angle, which is found by means
of the formulae:

cos (p cos t= n sin N
sin

cp
= n cosN

cos
&amp;lt;p

sin t

tang =
,

n cos (N -h (?)

or:

cos h sin p= cos cp sin t

cos h cos;? = n cos (N -\- 8}.

The altitude h is found by means of the equation:
shih= )i sin (N-+- ).

If we substitute these values in the expressions for dt
and

d&amp;lt;)\
we have also:

. a cos (p sin t

cos 8 sin CZV-f- )

d8= H- a cotang (A
r
-{- 5).

Now since sin p has always the same sign as sin
f, the

hour angle is diminished by refraction in the first and sec
ond quadrant, but it is increased, or its absolute value is

diminished also, in the third and fourth quadrant.
If &amp;lt;&amp;gt;

&amp;lt;; cp ,
then sin # cos

rp is less than cos d sin
cp and

hence cosp is always positive. Therefore the declination is

then increased by refraction. But if &amp;lt;&amp;gt;

&amp;gt;&amp;lt;/:.,

then cos p is

always positive when t lies in the second or third quadrant,
therefore then also the decimation is always increased by
refraction. But in the first and the fourth quadrant it may
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be diminished, and this is the case for all hour angles which

are less than that of the greatest elongation, for which:

tang cp
cos Z .&amp;gt; -|

tang o

When the errors h and A have been determined and it

is desirable to correct them, this can be accomplished simply

by changing the position of the polar axis of the instrument

in a vertical as well as a horizontal direction. For if y is

the arc of a great circle drawn from the pole perpendicular

to the meridian, and if x is the distance of the pole from the

point of intersection of this arc with the meridian, then we

have :

tang x= tang A cos h

and:

siny= sin k sin h.

Therefore it is only necessary to move the lower end

of the polar axis by the adjusting screws through the distance

y in the horizontal direction and through the distance x in

the vertical direction.

The formulae given above for determining A and h pre

suppose, that /, is a small quantity. But this condition can

always be fulfilled, since the instrument can very easily be

approximately adjusted. For this purpose the instrument is

set at the declination of a culminating star (the index error

/\ having been determined before) and then by means of

those foot -screws which act in the plane of the meridian

(or if the instrument is mounted on a stone pier, by the vert

ical adjusting screws of the plate on which the polar axis

rests) the star is brought to the wire-cross. The same ope

ration is then performed for a star whose hour angle is about

6 h
, using now those screws which turn the entire instrument

round a horizontal line in the plane of the meridian (or using

the horizontal adjusting screws of the polar axis).

No regard has been paid to the effect of the force of

gravity upon the several parts of the instrument. This pro

duces a flexure of the telescope as well as of the two axes.

Now the flexure of the polar axis need not be taken into

consideration, if the centre of gravity of all parts of the in

strument, which are moveable on this axis, falls within it, and

this must always be the case, at least very nearly, if the in-
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strument is to be in equilibrium in all different positions.

Only the pole of the instrument will have a different position
on the sphere of the heavens than that which it would have

without flexure, but this position remains constant in what
ever position the instrument may be. The flexure of the tel

escope ,
which may be assumed equal to

;
sin z

,
can be de

termined by the method given in No. 8, and since like the

refraction it affects only the zenith distance, the correction

for it can be united with that for refraction by using in the

formulae given above a tang z -f- 7 sin z instead of a tang z.

The flexure of the declination axis has the effect, that the

angle * is variable with the zenith distance. Now if the

force of gravity changes the zenith distance of the point K
by ft sin z, then the corresponding change of its declination D
is ft sin z cos p, and that of its hour angle T is ft

sin *L^P
cos D

or since in this case D is very nearly equal to zero
,

the

change of declination is ft sin y and that of the hour angle
ft cos cp

sin T. But since we have :

Tr

=90-(-T&quot; if the circle-end is west

and =r&quot; 90 if the circle -end is east,

we have to take instead of this hour angle:
90 H-T&quot;^ cosy COST&quot;

or T&quot; 90 H- fl cos
&amp;lt;p

cos
T&quot;,

and hence we must use in the formulae given before

T&quot;=F/?COS f/
cos T&quot; instead of T&quot; and i 4-^siny instead of

,

since now FLK= 90&quot; i ft sm (f. Thus we obtain:
T= r&quot;-)-&t Itgdsin^K) =f=csQc8=f=itgS=i={3tgd[sin(f&amp;gt;-l- cosy cotg COST].

Therefore i is in this case not constant, but we must take
instead of it:

i -+- fi [sin (f -f- cos
y&amp;gt; cotang 8 cos r\.

Now the observation of a star in both positions of the
instrument gives an equation of the form:

c sec tf-f- i
1

tang $+ p tang S [sin
y&amp;gt;

-f- cos
&amp;lt;p cotg S cos r]

= T
-&quot; ^i~~ T&amp;gt;

i^

and therefore we can determine c, i and ft by observing three
different stars in both positions of the instrument.

17. If the equatoreal is well constructed so that the er

rors can be supposed to remain constant at least for mod
erate intervals of time, and if the circles have a fine gradua-

29
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tion and are furnished with reading microscopes, such an

instrument can be advantageously employed to determine dif

ferences of right ascension and declination, and hence to

determine the places of planets and comets. For this pur

pose the telescope must have two parallel wires which are

a few seconds apart and parallel to the motion of the stars,

and another wire perpendicular to those. The object, which

is observed, is then brought between the parallel wires by
means of the motion of the instrument round the declination

axis, and the transit over the perpendicular wire is observed,

(if there should be several such wires parallel to each other,

then the times of observations are reduced to the middle wire

according to No. 20) and then the two circles &quot;of the instru

ment are read. Then in the same way also the star, whose place

is known, is observed. If the readings of the circle are cor

rected for the errors of the instrument and for refraction, the

differences of the right ascensions and declinations of the star

and the unknown object are obtained, and if these are ad

ded to the apparent right ascension and declination of the

star, the apparent place of the object is found. This method

has this advantage, that one can never be in want of a com

parison star and can always choose stars whose places are

well known, even standards stars. However it is best not

to take the comparison stars at too great a distance from

the object, because otherwise mistakes made in determining

the errors of the instrument would have too much influence

on the results. But when the star is near, those errors will

have very little influence, since both observations will be

nearly equally affected.

Usually however the equatoreal is not perfect enough

for determining the differences of right ascension and decli

nation by it, and these determinations are made by means

of a micrometer connected with the telescope, whilst the par-

allactic mounting of the instrument serves merely for greater

convenience. Such micrometers, whose theory will be given

in the sequel, are used also to determine the distance of

two objects and the angle of position, that is, the angle,

which the line joining the two objects makes with the de

clination circle passing through the middle of this line. This
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angle is obtained from the reading of the circle of the mi

crometer, whose centre is in the line of collimation of the

telescope. If the equatoreal is perfectly adjusted, then in

every position of the instrument the same point of the po
sition circle will correspond to the declination circle of that

object, to which the telescope is directed. But otherwise

this point varies, and hence the readings of the position circle

must be corrected by the angle, which the great circle pas

sing through the object and the pole of the instrument ma
kes with the declination circle. If we denote this angle by TT,

we have in the triangle between the object, the pole and the

pole of the instrument:

cos S sin ?t= sin 1 sin (i A)

or n= 1 sin (T A) sec 8.

Therefore we obtain from the reading of the circle P 1

the true angle of position P, reckoned as usually from north

towards east from to 360, by means of the equation:

P= p + p -4- I sin (T A) sec 8,

where &P is the index error of the position circle.

Compare on the equatoreal: Hansen, die Tiieorie des Aequatoreals, Leip

zig 1855 and Bessel, Theorie eines mit einem Heliometer versehenen Aequa
toreals. Astronornische Untersuchungen. Ed. 1.

IV. THE TRANSIT INSTRUMENT AND THE MERIDIAN CIRCLE.

18. The transit instrument is an azimuth instrument

which is fixed in the plane of the meridian. The horizontal

axis of the instrument is therefore perpendicular to the me
ridian so that the telescope can be turned in the plane of

the meridian.

With portable transit instruments this axis rests again
on two supports which stand on an azimuth circle. But the

large instruments have no such circle and the Ys on which

the pivots of the axis rest are fastened to two insulated stone

piers. One of the Ys is provided with adjusting screws, by
which it can be raised or lowered in order to rectify the

horizontal axis, whilst the other Y admits of a motion par-
29*
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allel to the meridian, by which the azimuth of the instru

ment can be corrected.

One end of the axis supports the circle, which, if the

instrument is a mere transit, serves only for setting the in

strument. If the circle has a fine graduation, so that the

meridian altitudes can be observed with the instrument, it

is called a meridian circle. The modern instruments of this

kind have all two circles, one on each end of the axis.

Sometimes both these circles have a fine graduation, but

usually only -one of them is finely divided, whilst the other

serves for setting the instrument. At first we will pay no

regard to the circle of such an instrument and treat it as a

mere transit instrument.

We will suppose that the axis produced beyond the circle

end, which shall be on the west side, intersects the sphere

of the heavens in a point, whose altitude and azimuth are

b and 90&quot; A;, reckoning the azimuths as usually from the

south point through west etc. from to 360. Then we

have the rectangular co-ordinates of this point, referred to

a system, whose axis of z is vertical, whilst the axes of x

and y are situated in the plane of the horizon so that the

positive sides of the axes of x and y are directed respecti

vely to the south and west points:

z= sin b

y= cos b cos k

x= cos 6 sin k.

If we denote the declination and the hour angle of this

point by n and 90 m, then we have the co-ordinates of

this point, referred to a system whose axis of z is perpen

dicular to the equator, whilst the axis of y coincides with

the corresponding axis of the former system:

z= sin n

y= cos n cos m
#= cos n sin m.

Now since the axes of z of the two systems make an

angle equal to 90
y&amp;gt;

with each other, we have :

sin n= sin b sin
9?

cos 6 sin k cos 90

cos n sin m= sin 6 cos y -+- cos b sin k sin y
cos n cos TO= cos b cos k.
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The same formulae can be deduced from the triangle
between the pole, the zenith and the point (), towards which

the east end of the axis is directed. For in this triangle we
have ZP= 90 qp, Z = 90 -f- 6

,
P Q = 90 -f- n and

If the instrument is nearly adjusted so that b and k as

well as m and n are small quantities, whose sines can be

taken equal to the arcs and whose cosines are equal to unity,
we find the formulae:

n= b sin 9? k cos
&amp;lt;p

m= b cos
&amp;lt;p

-\- k sin
9?,

or the converse formulae:

b = n sin
&amp;lt;p

-+- m cos 9?

fc= n cos 99 -f- m sin
9?.

Now if we assume, that the line of collimation of the

telescope makes with the side of the axis on which the circle

is the angle 90-h-c, and that it is directed to an object,

whose declination is d and whose east hour angle is r, which

quantity therefore is equal to the interval of time between the

time of observation and the time of culmination of the star,

then the co-ordinates of the star with respect to the equator,
the axis of x being in the plane of the meridian, are:

z= sin S, y = cos sin r
and x= cos S cos r,

or if we suppose, that the axis of x is perpendicular to the

axis of the instrument:

z= sin
, y= cos S sin (r m)

anu O:= COS#COS(T m).

Here r m is the interval between the time of obser

vation and the time at which the star passes over the meri

dian of the instrument.

If now we imagine another system of co-ordinates, so

that the axis of x coincides with that of the former system,
whilst the axis of y is not in the plane of the equator, but

parallel to the axis of the instrument, then we have:

y= sin c,

and since the axes of z of these two systems make with each

other the angle n, we have:

sin c= sin n sin S -f- cos n cos sin (r m).
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In the case of the lower culmination, T m is on the

same side of the meridian, but since then the star is ob

served after it has passed the meridian of the instrument,

we must take r m negative. Therefore in this case the

co-ordinates of the point to which the telescope is directed

will be:
z= sin 8, y= -f~ cos sin (r m),

and hence we have:

sin c= sin n sin 8 cos n cos sin (r m).

Therefore in this case we have only to change the sign

of the second term in the formula for sin c and we can take:

sin c= sin n sin -+- cos n cos 8 sin (T ni)

as the general formula, if for lower culminations we use

180 ti instead of J. These formulae can also be deduced from

the triangle between P, Q and the star 0, of which the sides

are P0= 90
&amp;lt;?,

P() = 90 H-rc, OP= 90 c, whilst

the angle P Q is equal to 90 -+- m r for upper culmina

tions and equal to 90 m -+- T for lower culminations.

From the above formula we find:

cos n sin (r m) = sin n tang 8 -f- sin c sec 8,

and adding to this the identical equation:
cos n sin m= cos n sin m,

we obtain:

2 cos n sin ^ r cos [\t m] = cos n sin m -f- sin n tang 8 -+- sin c sec 8. (a)

Now if we suppose the instrument to be so nearly ad

justed that m, n and T are small quantities, we find from this:

T= m -f- n tang 8 -j- c sec S *).

This is Bessel s formula for reducing observations made

with a transit instrument.

If T is known and T is the clock -time of observation,

the clock -time of the culmination of the star is T-j-r. If

then A* is the error of the clock on sidereal time, then

T-t-r-hA* wiU be the sidereal time of the culmination of

the star or be equal to its right ascension . Hence we have :

a= T -4- A t -f- m -f- n tang -+- c sec 8.

Therefore if A* is known, the right ascension of the

star can be determined, and conversely, if the right ascension

of the star is known, the error of the clock can be found.

*) The same we get immediately from the equation for cos n sin (r m).



455

We can express T in terms of b and &, if we substitute

the expressions:

cos n sin m= sin b cos
fp -f- cos b sin cp sin k

sin ?z= sin b sin
92

cos b cos 9? sin k

in the equation (a). We find then:

COS (cp 0&quot;)

2 sin ^ T cos n cos [-| t m] = sin 6
cos 8

and from this:

sin (cp $) s
-h cos b sin k ~ (- c sec o,

,
cos (fp 8)

,

. sm
(fp )

b ----iz ---
f- k -- -=---(- c sec S.

cos o cos o

This formula is called Mayer s formula, since Tobias

Mayer used it for reducing his meridian observations. It is

the same formula which was deduced before from the for

mulae for the azimuth instrument.

Hansen has proposed still another form of the equation
for r, which is the most convenient of all. For if we
add the two equations:

,
sin a?

2

sin n tang cp
= sm b -- cos b sin k sm m

cos
cp

and
cos n sin m= sin 6 cos

cp -f- cos 6 sin k sin
rp,

we find:

cos n sin m= sin b sec fp sin n tang cp

and if we substitute this value of cos n sin m in the equation

(a), we obtain easily:

t= b sec cp -\- n [tang tang cp] -f- c sec &amp;lt;?.

All these formulae are true, if the circle is on the west

side. But if the circle is east, then the altitude of the west

end of the axis is 6, and the angle, which the line of

collimation makes with the west end of the axis, will be

90 c, whilst A; remains the same. Therefore in this case

we have only to change the sign of b and c and we have

according to Mayer s formula:

For upper culminations

Circle West = T+ A&amp;lt;+ 65?^$ +t !!?_?-$+ c sec ,
COS O COS O

Circle East = T+ A t
- b^~^+ k^rf _ e sec S.

COS COS O
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For lower culminations we take 180 S instead of 8

and obtain :

Circle West a -+- 12 h = T-\- A* -h b -

. sin (op-hd)
-h k -^ c sec

cos 8

Circle East +12h= T-f- A* 6 - r - -
cos o

. sin (OP -h &amp;lt;?)

-h A:
-
-f- c sec &amp;lt;?.

cos o

W^hen a large mass of stars is to be reduced, Mayer s

formula is not very convenient, and it is better to employ
then Bessel or Hansen s formula. If we choose Bessel s for

mula, we must apply to each observation the correction:

n tang -f- c sec

and the error of the clock is then :

Tm.
If we take Hansen s form we apply the correction:

n [tang 8 tang (p\ -j- c sec 8

and obtain the error of the clock form:

a T 6 sec
(f.

19. These formulae can be deduced easily in the fol

lowing way: If the circle is West, and 6 is the altitude of

the point to which the circle-end of the axis is directed, then

the telescope will not move in the plane of the meridian, but

it will describe the great circle A Z B Fig. 14 pag. 433. If

now the star is observed, we must add to the time of

observation the hour angle:
Fig. n. r= OPO

But we have:
sin

sin T= sr
cos o

and

tang 00 = tang b cos Z= tang 6 cos
(&amp;lt;p 8\

therefore :

If the azimuth of the instrument is &, the

telescope will describe the vertical circle Z A Fig. 17.

But we have again, if is the star:

__, sin 0O
sin OPO = sin T= ----

,,

cos
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and
tang 00 = tang k sin O Z,

therefore :

. sin
(&amp;lt;p

S)
r= K ~

Finally, if the line of collimation of the telescope makes

with the side of the axis on which the circle is, the angle

90 -+- c, it will describe a small circle parallel to the meridian

and we must add to the time of observation the hour angle

(see Fig. 15 pag. 434):
00

r= ^= c sec o.
cosS

For lower culminations we find the corresponding for

mulae in the same way.

20. The normal wire of the transit when perfectly ad

justed, is a visible representation of the meridian, and the

times are observed, when the stars cross this wire. Now in

order to give a greater weight to these observations, the

transits over several other wires, placed on each side of this

wire (which is called the middle wire) and parallel to it, are

also observed. Then in order that these transits may be taken

always at the same points of the wires, a horizontal wire is

stretched across these wires, in the neighbourhood of which

the transits are always observed. In order to place this wire

perfectly horizontal and thus the other wires perfectly vert

ical, we let an equatoreal star run along the wire, and turn

the diaphragm, to which the wires are fastened, by means of

two counteracting screws about the axis of the telescope, un

til the star does not leave the wire during its passage through
the field. If the wires on both sides are equally distant from

the middle wire, the arithmetical mean of all observations will

give the time of the transit over the middle wire. However

usually these distances are not perfectly equal ; besides, it has

some interest, to find the time of transit over the middle

wire from the time of observation on each wire, since we
can judge then of the accuracy of the observations by the

deviations of the single results from their mean. Therefore

we must have a method for reducing the time of observation

on any lateral wire to the middle wire, and for this purpose
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we must know the distances of the wires from the middle
wire. This distance f of a wire is the angle at the centre

of the object glass between the line towards the middle wire
and that towards the other wire. But we had:

sin (r in} cos n= sin n tang -+- sin c sec S.

Now if an observation was taken on a lateral wire whose
distance is

/&quot;,
then the angle which the line from the centre

of the object glass to this wire makes with that side of the

axis on which the circle is, will be:

90 H-c-4-/*),
where f is positive, if the star comes to this wire before it

comes to the middle wire. If then r is the east hour angle
of the star at the time of crossing the wire, we have:

sin (T m) cos n = sin n tang 8 -f- sin (c -(-/) sec
,

and subtracting from this the former equation:
2 sin \(t r

~)
cos [4 (r -{- r) m] cos n = 2 sin ^fcos [c -f- \f\ sec S.

Now when the instrument is nearly adjusted, so that c,

n and m are small quantities, we find from this the following
formula

,
if we denote by t the time r r

,
which is to be

added to the time of observation on a lateral wire in order

to find the time of transit over the middle wire:

sin t sin/sec d.

This rigorous formula is used for stars near the pole,

the value of sec d being then very great; but for stars far

ther from the pole it is sufficient to take:

If it is not required to reduce the lateral wires to the

middle wire, we can proceed also in the following way. Let

/&quot;, /&quot;&quot;, /&quot;&quot; ,
etc. be the distances of the lateral wires on the

side towards the circle, and
(p\ (p&quot;, (/&amp;gt; &quot;,

etc. those on the

other side, then compute:

where n is the number of wires. Then we must add to the

arithmetical mean of the transits over all the wires the quantity :

=J= a sec S

*) See Fig. 16 pag. 436, where O is the centre of the object glass, M
the middle wire and F the other wire.
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where the upper or lower sign is to be used accordingly as

the circle is West or East. For lower culminations the op

posite sign is taken.

The equation
sin t= sin/sec 8

serves also for determining the wire -distances by observing

the transits of a star near the pole and computing:

f= sin t cos S,

where t is the difference of the transit over the lateral wire

and the middle wire, converted into arc. In this way the

wire-distances are found very accurately. For the pole-star,

for instance, we have:

cos &amp;lt;?

= 0.02609,

and hence we see, that an error of one second of time in

the difference of the times of transit produces only an error

of s
. 03 in the value of the wire -distance.

/ Gauss has proposed another method for determining the

wire -distances.

Since rays, which strike the object glass of a telescope

parallel, are collected in the focus of the telescope, it follows,

that rays coming from the focus of a telescope are parallel

after being refracted by the object glass. If the rays come

from different points near the focus, their inclinations to each

other after their refraction are equal to the angles between

the lines drawn from the centre of the object glass to those

different points. Now if another telescope, which is adjusted

for rays coming from an infinite distance, is placed in front

of the first telescope, so that their axes coincide, we can see

through it distinctly any point at the focus of the first tel

escope. Therefore if there is at the focus of the first teles

cope a system of wires, it is seen plainly through the second

telescope, provided that those wires are suitably illuminated.

But this is simply done by directing the eye -piece of the

first telescope towards the sky or any other bright object.

If then the second telescope is that of an azimuth instru

ment, the apparent distances of the wires can be measured

by it like any other angles.

In order to bring the wires exactly in the focus of the

object glass, the position of the eye -piece with respect to
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the wires is first changed until they appear perfectly distinct.

Then the wires are at the focus of the
5

eye -piece. After

that the telescope is directed to a star, and the entire tube

containing the wires and the eye-piece is moved towards or

from the object glass, until the star is seen distinctly. When
this is the case, the wires are at the focus. In order to

examine this more fully, we direct the telescope to an object
at an infinite distance and bring it on the wire, and then

slighty shifting the eye before the eye-piece we see, whether

the object remains on the wire notwithstanding the motion.

If this should not be the case, it shows, that the wires are

not exactly at the focus, and they are too far from the ob

ject glass, if the eye and the image of the object move to

wards the same side from the wire. But if the eye and the

image move to different sides, the wires are too near the ob

ject glass *).

In 1850 June 20 Polaris was observed at the lower

culmination with the transit-instrument of the observatory at

Bilk, and the following transits over the wires were obtained :

Circle West.
I II III IV V

Hence the differences of the times are:

/ /// II HI III IV IIIV
27m Os 13m 57 13m O 26m 58 s

.

Since the declination of Polaris on that day was:

88 30 18&quot;. 01

we find by means of the formula:

/= sin t cos

the following values of the wire -distances:

I 111= 42 s.l 7, /////= 2 is. 84, /// /F=20s.34, /// F=42s. 12.

On the same day the star r\ Ursae majoris was observed:

/ // /// IV V
TJ Ursae maj. Upper culm. 18 . 5 50.3 13h 41 1*

24&amp;lt;* . 3 56.0 30.0.

*) It is best to use for this the pole-star. Since the wire -distances

remain the same only as long as the distance of the wires from the object-

glass is not changed, it is necessary to bring the wires exactly in the focus

before determining the wire -distances, and then leave them always in the

same position.
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The declination is 50 4 . Hence the wire-distances are

found by means of the formula:

tfsec 8

I HI 65 s
. 70, IT 111= 34s. Q2, 777 7F=31s .69, 777 F=G5 .G2.

Since the star was first seen on the first. wire, we find

the transits over the middle wire from these wires as follows:

13h 41i24*.20

24 .32

24 . 30

24 .31

24 .38

13h 41m 24s.30.

The arithmetical mean of all wire-distances, taking them

positive for the wires / and // (these being on the side of

the circle) and negative for the wires IV and F, is :

Now if we take the arithmetical mean of the transits of

?? Ursae majoris over the several wires, we find:

13Ml 23 82,

and adding to it the quantity:

a sec 8= -f- . 48

taken with the positive sign, because the circle was West,
we find the transit over the middle wire from the mean of

all wires, as before:

13 h 41m 24s. 30.

21. If the body have a proper motion, this must be

taken into account in reducing the lateral wires to the middle

wire. But since such a body has also a visible disc and a

parallax, we will now consider the general case, that one

limb of such a body has been observed on a lateral wire, and

that we wish to find the time of transit of the centre of the

disc over the middle wire.

We have found before the following equation, which is

true for circle West:

sin c= sin n sin 8 -+- cos n cos 8 sin (r rn).

Now if the body has been observed on a lateral wire,

whose distance is
/&quot;,

where f is again positive, when the wire

is on the same side from the middle wire as the circle, then

we must use in this formula c -f- f instead of c. But if we
have not observed the centre but only one limb of the body,
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whose apparent semi-diameter is ti, we must take instead of

c now:

where the upper or lower sign must be used accordingly as

the preceding or the following limb has been observed*). If

then O is the sidereal time of observation, and a is the ap

parent right ascension of the body, then its east hour angle is:

and hence we have the following equation, denoting the ap

parent declination by d :

sin [c -+-/=J= h
]
= sin n sin -f- cos n cos 8 sin [ m],

where the upper or lower sign is to be taken accordingly
as the preceding or the following limb has been observed.

If then A denotes the distance of the body from the earth,

the distance from the centre of the earth being taken as the

unit, we have also:

A sin [c -h/== h
]
= A sin n sin 8

A cos n cos m cos 8 sin (0 )

A cos n sin m cos 8 cos (0
)&amp;gt;

and since:

c, n, m, /, h
,

and therefore also a are small quantities ,
their sines

can be taken equal to the arcs and their cosines equal to

unity, and we obtain:

A cos 8 (a 0} = -t- A /=*= A - h -h m A cos 8 -h n A . sin 8 -+- c A.

The apparent quantities here can be expressed by geo
centric quantities. For we have according to the- formulae

(a) in No. 4 of the third section, introducing the horizontal

parallax instead of the distance from the centre of the earth :

A cos 8 cos a = cos 8 cos
(&amp;gt;

sin 7t cos 90 cos

A cos 8 sin a = cos 8 sin a
(&amp;gt;

sin n cos (p sin

A sin 8 = sin 8 g sin n sin 9? ,

from which we easily obtain:

A cos 8 cos (0 )
= cos 8 cos (0 a) Q sin n cos 9?

A cos 8 sin (0 a )
= cos 8 sin (0 )

or in case that O a is a small angle :

*) For if the preceding limb is observed on the middle wire, then the

centre would be seen at the same moment on a lateral wire, whose distance/

is equal to -j- A .
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A cos 8 (0 )
== cos 8(0 a}

A cos 8 = cos 8 $ sin n cos 9?

A sin 8 = sin 8
(&amp;gt;

sin n sin
9?

.

From the two last equations we find also with sufficient

accuracy:
A= 1 g sin n cos (9? 8).

Finally we have, denoting by h the true geocentric semi-

diameter of the body:
A h = h.

If we substitute these expressions for the apparent quan
tities in the above equation for:

A cos 8 (a 0\
we find:

cos 8 ( 0} ==/[! Q sin n cos (95 8}]
=t= k

-f- [cos 8
(&amp;gt;

sin n cos
y&amp;gt;] [m -f- n tang 8 -f- c sec 8

]

or:

_/Q_I_
^

/*
1

(&amp;gt;

sin 7t cos
(9? $)

COS $ COS $

, fi cosa&amp;gt; ~] r-M 1 P sin n ^j 1 7w -+- n tang
L cos d J

where 5 has been retained in the last term instead of J,

because it is more convenient in this form. The apparent
declination 8 is found with sufficient accuracy by the read

ing ot the small circle for setting the instrument. But if this

is not the case, we must use in the last term also the true

geocentric quantities. Now the last term in the equation for

A cos 8 ( &) is:

-h m A cos 8 -f- n A sin 8 -f- c A-

If we substitute here for A cos 8
, A sin and A the ex

pressions given before, and introduce the following notation:

m =m c cos
&amp;lt;p Q sin n

n = n c sin 9? (t
sin 7t

c = c [m cos
&amp;lt;f

-f- n sin cp] (&amp;gt;

sin n,

those three terms are transformed into :

cos 8 [m -f- n tang 8 -+- c sec 8],

and hence we obtain:

h 1 Q sin n cos (9? 8} , ,
~

,= (9 =t=
^+/ =^ h m -f- n tang &amp;lt;? -+- c sec 8. (6)

cos d cos d

Now if the body has a proper motion, we find the time

of culmination from the time of observation & on one of the

lateral wires by adding to the time, in which the body
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moves through the hour angle a S. But this time is equal
to the hour angle itself divided by 1

P., if I denotes again
the increase of the right ascension expressed in time in one

second of sidereal time. If we put therefore:

1 $ sin n cos
(q&amp;gt; ~)

the reduction to the meridian is:

==1= _A \-fF+-
M + H&amp;gt; ta &quot;g S ~*~ S6C 8

(1 *)* y
1 A~

or:

h 1 sinTt
cos&amp;lt;jp

sec$
=::=t::

7j
TV -^4-/F4 z ^- [m 4- n tang 4- e sec

].

/ c

If we omit the term -^. ,
we find the time of culmi

nation for the observed limb instead for the centre. Moreo

ver, if we ornit 1 I in the denominator of the last term,

the right ascension of the limb, which is obtained thus, is

not referred to the time of culmination, but to the time of

the transit over the middle wire. Since:

1 Q sin n cos
y&amp;gt;

sec

always differs little from unity, we can use instead of this

factor unity, if m, n and c are very small quantities *).

Bessel has given a table in his Tabulae Regiomontanae,
which facilitates the computation of the quantity F for the

moon. This table gives the logarithm of

1 Q sin n cos (90 $)

the argument being:

log
(&amp;gt;

sin n cos (95 &amp;lt;?),

and besides it gives the logarithm of 1 A
,

the argument

being the change of the right ascension of the moon in 12

hours. Another table gives the logarithm of F and the quan

tity
--

^- ^
for the sun, the arguments being the days of

the year.

If a body, which has a proper motion, has been ob

served on all the wires, then it is not necessary to know the

quantity F, since, we may take again the arithmetical mean
of all the wires and add the small quantity a sec

&amp;lt;?,

as was

shown before in No. 20.

*) Compare: Bessel, Tabulae Regiomontanae pag LII.
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Example. In 1848 July 13 the transit of the first limb

of the moon was observed with the transit instrument at

Bilk, when the circle was West:

/ 17h25m 42s.9

\
-- II 26 5 .0

/// 28 . 8

IV 51 .0

V 27 14 .8.

The wire distances were at that time:

/ 42*. 23 // 21s. 96 IV 20^.32 F 42&quot; . 30.

Now in order to reduce the several wires to the middle

wire, we must first compute the quantity F. But on that

day was:
= 18 10 . 6,

further the increase of the right ascension in one hour of

mean time was :

129s. 8, and 7r= 55 H&quot;.0, A= 60s.l5;

moreover we have for Bilk:

y = 50 1 . 2, log ?
= 9 . 99912.

Now since one hour of mean time is equal to 3609 s
. 86

sidereal, we find:

I = o . 03596,
and hence :

^=0.03565.

If we multiply the wire-distances by this factor, we find:

45 s
. 84 23 s

. 84 22s . 06 45 . 92.

Hence the times of observation reduced to the middle

wire are:

17h 26m 23s. 74

28 .84

28 .80

28 .94

28 .88

mean value 17 h 26^ 28 s
. 84.

The term

is equal to:

-h 65 . 67,

and hence the time of transit of the moon s centre over the

middle wire is:

17 b 27 34s. 51.

30
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Now on that day b and k and therefore also m and n

were equal to zero, but:

c= H- s
. 09.

Therefore taking the factor:

I
(&amp;gt;

sin 7f cos
cjj

sec

~r^r~
equal to unity, we find for the time of culmination of the

moon s centre:

17 h 27n 34&quot; . 60.

If the parallax of the body is equal to zero or at least

very small, as in case of the sun, the formula for the reduc

tion to the meridian becomes more simple. For then we
have :

F== L_
(1 A)cos&amp;lt;?

In observing the sun usually the transits of both limbs

over the wires are observed. Then it is only necessary to

take the arithmetical mean of the observations of both limbs,

and thus the computation of the term -~ is avoided
(1 A) cos o

in this case.

22. It shall be shown now, how the errors of the tran

sit instrument are determined by observations.

First the instrument must be nearly adjusted according
to the methods given in No. 5 of the fourth section. The
level-error can then be accurately determined by means of

the spirit-level according to No. 1 of this section, when the

inequality of the pivots is known from a large number of

observations in both positions of the instrument. The incli

nation of the axis can also be found by direct and reflected

observations of a star near the pole, for instance, the pole-

star. For if we observe such a star on several wires and

call T the arithmetical mean of the times of observation re

duced to the middle wire, then we have for the upper cul

mination the equation:

= T+ A ,+ i

C

-^+ t^ c sec S,
COS O COS O

where i = b, when the circle is West, and i = &
,
when

the circle is East, if b and b denote the elevation of the

circle-end in the two positions. But if we observe the image
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of the star reflected from an artificial horizon, in which case

the zenith distance is 180 z, we have, denoting now the

arithmetical mean of the times of observation reduced to the

middle wire by T :

and hence we find:

cos

2 cos z

Since the value of cos d is small, we can find i by such

observations with great accuracy.
Then in order to determine the error c, we observe the

same star in the two positions of the instrument, when the

circle is West and when it is East. For these observations

we must choose again a star near the pole, ,
3 or A Ursae

minoris, because for other stars there is no time for revers

ing the instrument between the observations on the several

wires, and because for these stars the coefficient sec 3 of c

is very great so that errors of observation have only little

influence on the determination of c. If we observe the star

on several wires when the circle is West, and denote by t

the arithmetical mean of the times of observation, reduced

to the middle wire and corrected for the level-error, we have :

Then if we reverse the instrument and observe the star

again on several wires, when the circle is East, we have,

denoting now the arithmetical mean of the times of obser

vation reduced to the middle wire and corrected for the level-

error, by t :

From the two equations we find therefore:

t -t
c= - - - cos d.

If there is a very distant terrestrial object in the horizon

in the direction of the meridian (a meridian mark), furnished

with a scale, the value of whose parts is known in seconds,
we can determine the collimation-error by observing this ob

ject in the two positions of the instrument, since, if we read

30*
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the point of the scale in which it is intersected by the middle

wire in the two positions, the collimation- error is equal to

half the difference of the readings. Still better is it to use

a collimator for this purpose. But then the telescope must

have besides the vertical wires, which serve for observing
the transits of the stars, also a moveable micrometer- wire,

parallel to them, whose position can be easily determined by
means of a scale, which gives the entire revolutions of the

micrometer-screw, and of the divided screw head whose read

ings give the parts of one revolution of the screw. If the

telescope is furnished with such a wire, it is directed to the

wire-cross of the collimator in both positions, and the move-

able wire is moved until it coincides with it each time. Now
if the readings for the moveable wire in the two positions

are a and b, it is easily seen, that | (a -+-
/&amp;gt;) corresponds to

that position of the moveable wire, in which a line drawn

from it to the centre of the object glass is perpendicular to the

axis of the instrument. Therefore if the moveable wire is

moved until it coincides with the middle wire, and if the

reading in this position is C, then C |(a-f-6) or |(a-}-&) C
is the error of collimation

,
and its sign is positive ,

if the

moveable wire in the position | (a -j- 6) and the circle -end

of the axis are on opposite sides of the middle wire.

When there are two collimators opposite each other,

one north, the other south of the telescope, the error of col

limation can be determined without reversing the instrument.

For, the two collimators being directed to each other *), one

of them is moved until the two wire-crosses coincide so that

the axes of the two collimators are parallel. Then the teles

cope is directed in succession to each of the collimators, and

the moveable wire is placed exactly on their wire-crosses. If

the readings for the moveable wire in the two positions be

a and 6, then the error of collimation is again ~(a-\-b) C

or C | (a -f- 6), and we can decide about its sign by the

same rule as was given before.

*) In order that this may be possible if the collimators are on the same

level with the instrument, the cube of the axis of the latter has two aper

tures opposite each other, through which the two collimators can be directed

to each other, when the telescope of the instrument is in a vertical position.
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Another method of determining the error of collimation

is that by means of the oollimating eye-piece. For this pur

pose the telescope is directed to the nadir and an artificial

horizon placed underneath *). If then the line of collimation

deviates a little from the vertical line, one sees in the teles

cope besides the middle wire its reflected image, whose dis

tance from the wire will be double the deviation of the line

of collimation from the vertical line, which can be easily

measured by means of the inoveable wire**). For this purpose
it is best, to place first the moveable wire so, that the middle

wire is exactly half way between the reflected image and the

moveable wire and afterwards so, that the reflected image
is half way between the middle wire and the moveable wire.

Since there is also a reflected image of the moveable wire,

in the first position the two wires and by their side the two

reflected images are seen at equal distances, whilst in the

other position the wires and their images alternately are seen

at equal distances. The difference of the two readings for

the moveable wire is equal to three times the distance of the

middle wire from its reflected image.
In order to see the image reflected from the mercury

horizon, it is requisite, that light be so reflected towards the

mercury as to show the wires on a light ground. This is

accomplished by placing inside the tube of the eye -piece a

plane glass inclined by an angle of 45 to the axis of the

telescope, an aperture being opposite in the tube, through which

light can be thrown upon it. In order to have then the

*) Usually a mercury horizon, that is, a very flat copper basin filled

with mercury, which is poured into the basin after this has been well rubbed

with cotton dipped into nitric acid. The mercury then dissolves some of the

copper and gives in this impure state a more steady horizontal surface. The

oxyde which is formed on the surface can be easily taken off by means of

the edge of a paper, and thus a perfectly pure reflecting surface is easily

obtained.

**) For all these determinations it is requisite to know the value of

one revolution of the micrometer-screw of the moveable wire in seconds. But

this can be easily found, if the known interval between two wires is mea

sured also in revolutions of the screw by placing the moveable wire over

each of these wires, and reading the scale and the screw head.
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whole field uniformely illuminated, it is necessary, as was

first shown by Gauss, that there be no lens between the

wires and the reflector. But since it is always troublesome,

to exchange the common eye-piece so often for this collimat-

ing eye-piece, Bessel proposed, to place simply outside upon
the common eye -piece a plane glass in the right inclination

or a small prism, and to reflect by means of it light into

the telescope. It is true, a small part of the field is then

only illuminated, but there is no difficulty in observing the

reflected image^ provided that the glass or the prism is fast

ened in a frame so that its inclination to the axis can be

changed.
The error of collimation is then determined in the fol

lowing way. Let b denote the inclination of the line passing

through the Ys, taken positive, when the side on which the

circle is, is the highest; further let u denote the inequality

of the pivots expressed in seconds and taken positive, when

the pivot on the side of the circle is the thickest one of

the two; finally let c be the error of collimation, taken pos

itive, when the angle, which the end of the axis towards

the circle makes with the part -of the line of collimation to

wards the object glass, is greater than 90; then we have,

denoting by d the distance of the middle wire from its re

flected image, and taking it positive, when the reflected image
is on that side of the middle wire, on which the circle is:

% d= b -(- u c.

Therefore if b-i-u is known by means of the spirit-level,

the error of collimation can be found from this equation, and

conversely, if the error of collimation has been determined

by other methods, the inclination of the axis of the pivots

is found. Now if the instrument is reversed, and d denotes

again the distance of the middle wire from its reflected image,

taken again positive, when it is on the side towards the

circle, we have:

4 d = b -f- u c,

and from both equations we obtain:

c t*= J(rf-hrf )

l = -+-\ (dd }.

Therefore by observing the reflected image in both po-
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sitions of the instrument, we can find c as well as the in

clination of the axis, if the inequality of the pivots is known.

With small portable instruments, which usually are not

furnished with a moveable wire, we can find the error of

collimation according to the same method but by means of

the spirit-level. For if one. end of the axis is raised or

lowered by means of the adjusting screws, until the reflected

image is made coincident with the middle wire, we have

d= and hence c=b-\-u. Therefore if b-}-u is found by

the spirit-level according to No. 3 of this section, this value

is equal to the error of collimation.

With the meridian circle at Ann Arbor the following

observations were made in the two positions of the instru

ment.

By means of the level the inclination of the axis of the

pivots was found, when the circle was West, b =+ 2&quot;. 77

and when the circle was East, 6 !
= 2&quot;. 45. The distance

of the middle wire from the reflected image was found in

parts of a revolution of the micrometer -screw :

d = -4- (K 2260 Circle West

d = .3107 Circle East.

We have therefore:

c u = -+- 0&quot;. 02 12 = -f- 0&quot;. 43

since one revolution of the screw is equal to 20&quot;. 33, and since

M= -f-0&quot;. 17, we have:

c= -1-0&quot;. 60,

and the inclination of the axis, when the circle was West,

6 = -h2&quot;.90, and when the circle was East, b\= 2&quot;. 56.

Then the instrument was directed to one of the colli-

mators, and when the moveable wire was made coincident

with the wire -cross, the reading of the screw was:

21*. 132 Circle West

21 .999 Circle East.

We have therefore \ (a-t-6)= 2-1 . 5655; the coincidence

of the wires was 21^.5397, and since we must take (0-4-6) C,

in order to find the error of collimation with the right sign,

we obtain:

c= -f-0&quot;.025S= -}-0&quot;.52.
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Finally the two collimators were directed towards each

other and the moveable wire was made coincident with the

wire-crosses. Then the readings of the screw were:

for the south collimator 2K 1190

for the north collimator 22 .0127

Hence we have (-+-&)= &quot;TlT5G58&quot;

*C= 21 .5397

c
-= -h 0^.0261 =-+-0&quot;. 53.

The inclination and the error of collimation being thus

determined, it is still necessary, to find the azimuth of the

instrument and the error of the clock.

For this purpose we can combine the observations of

two stars, whose right ascensions are known. But in case

that the rate of the clock is not equal to zero, we must first

reduce the error of the clock to the same time by correcting

one time of observation for the rate of the clock in the in

terval of time between the two observations. Then &t in

both equations will have the same value. If then and t\ }

are the two times of transit over the middle wire, corrected

for the level-error, the collimation-error and the rate of the

clock, we have the two equations:

sin (OP )

--.,
COS 9

by means of which we can find the values of the two un

known quantities A t and k
;

for we have :

. sin (8 9&quot;)

a - a = t
-

t + k
7oslTo

-T,
COS y,

a a. (t O cos S cos S
hence k = -/v we

cosy sin (0 o )

After having found k we obtain the error of the clock

from one of the equations for a or . We see from the

equation for A;, that it is best, when d S is as nearly as

possible 90, and that it is of the greatest advantage, to combine

a star near the pole with an equatoreal star, because then

the divisor sin (^ &amp;lt;) ) is equal to unity and the numerator

is very small. If it is impossible to observe a star near the

pole, we can combine a star culminating near the zenith with

another near the horizon. But in either case it is always
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advisable to observe more than two stars, and to find the

most probable values of /\t and k from all the observations.

For these determinations the standard stars, whose rierhtO
ascensions are well known and whose apparent places are

given in the almanacs for every tenth day, are always used.

But these apparent places do not contain the diurnal aber

ration, since this depends on the latitude of the place. Now
according to No. 19 of the third section the diurnal aberra

tion for culminating stars is:

where the upper sign corresponds to the upper culmination,
the lower one to the lower culmination. We see therefore,

that it will be very convenient, to apply this correction with

the opposite sign to the observations, since then it can be

united with the error of collimation. Therefore the diurnal

aberration is taken into account, by writing in all the formu

lae given before c 0&quot;. 31 13 cos y instead of cor, expressed
in time, c O s.0208 cosy instead of rand (c-f-0

s
. 0208 cosy)

instead of c.

The methods given above for determining the azimuth

are generally used for small instruments, which have no very
firm mounting, and they may also be used for larger instru

ments, especially the first method of the two, when only re

lative determinations are made. The following may serve as

a complete example for determining the errors of an instru

ment of the smaller class.

Example. In 1849 April 5 the following observations

were made with the transit instrument at Bilk.

Circle West.
/ //

ft Orionis 54.8 15

Polaris U 38m 13s. 5lm 143.0
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If we reduce the observations to the middle wire and

apply the correction for the level -error, we find:

Circle West ft Orionis 5 !l 8m 37s . 42

Polaris 1 5 14 .33

Circle East Polaris 1 5 23 . 05-

From the observations of Polaris in both positions of the

instrument, we find the error of collimation

= -h(K 114,

and since the diurnal aberration for Bilk is equal to s
. 01 3

sec f)
,
we must take for c now -f-

s
. 101, when the circle is

West, and -f-
s

. 127, when the circle is East. If then we
correct the observations in the first position for the error of

collimation, we find:

ft Orionis = t = 5 h 8m 37* . 52

Polaris =* =1 5 18 .20.

Hence we have:

t t 4 h 3m 19 .32 a a= 4 h 2m 5S . 74,

and since:

7&amp;gt;

= 51 12 . 5

we find:

k= Os . 85.

Therefore the observation of ft Orionis corrected for the

errors of the instrument is:

5h 8&quot; 36s . 78,

and hence:

&t= 1^208. 12.

The methods for determining k, which were given be

fore, have this disadvantage, that they are dependent on the

places of the stars. It is therefore desirable to have another

method, which gives k independent of any errors of the

right ascensions, and which therefore can be employed when

absolute determinations are made with an instrument. For

this purpose the observations of the upper and lower cul

minations of the same star are used, as has been stated al

ready in No. 5 of the fourth section. In this case we have

a= 12 hH-A and &amp;lt;J
= 180 J, where &a is the change

of the right ascension in the interval between the two cul

minations, and therefore the formula for /?,
which was found

before, is transformed into:
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_ 12 h -h A (t o t
]

cosS 2

cos
&amp;lt;p

sin 2 8

2 cos 90 tang $

Also for this purpose it is best to observe stars very

near the pole at both culminations, because then the divisor

tang 8 becomes very great. But the method requires ,
that

the instrument remains exactly in the same position during
the time between both observations, or at least, if this is not

the case, that any change of the azimuth can be determined

and taken into account.

/ In order to dispense with frequent determinations of the

azimuth by means of the pole-star, a meridian-mark is usually

erected at a great distance from the instrument. This con

sists of a stone pillar on a very solid foundation, which bears

a scale on the same level with the instrument. If then by a

great many observations of the pole-star that point of the

scale, which corresponds to the meridian, has been deter

mined, the azimuth of the instrument can be immediately
found by observing the point, in which the scale is inter

sected by the middle wire, at least, if the scale remains ex

actly in the same position, and if either the error of colli-

mation is known or the instrument is reversed and the scale

is observed in the two positions of the instrument; for the

distance of the middle wire from the point of the scale, which

corresponds to the meridian, is in one position equal to k~\-c

and in the other equal to k c. But the distance of the

meridian-mark must be great, if great accuracy shall be ob

tained, since one inch subtends an angle of 1&quot; at a distance

of 17189 feet, and therefore in this case a displacement
of the scale equal to y5 of an inch would produce an error

of the azimuth equal to 0&quot;. 1. However such a great distance

is not favorable for making these observations, since the dis

turbed state of the atmosphere will very seldom admit of an

accurate observation of the scale. And since, besides, the ob

servation of such a meridian -mark is limited to the time of

daylight, Struve has proposed a different kind of meridian-

mark, which is in use at the observatory at Pulkova. In

front of the telescope, namely, a lens of great focal length is
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placed (Struve uses lenses of about 550 feet focal length)
in a very firm position and so that the axis coincides with

that of the telescope. The meridian -mark at its focus is

a small hole in a vertical brass plate, which in the telescope

appears like a small and very distinct circle. The lens is

mounted on an insulated pier and is well protected by suit

able coverings against any change. Likewise the meridian-

mark is placed on a insulated pier in a small house and care

fully protected against any external disturbing causes. Since

thus the same care is taken as in the mounting of the in

strument itself, it can be supposed, that the changes of the

lens and of the meridian-mark will not be greater that those

of the two Ys of the instrument, and since experience shows,

that the azimuth of a well mounted instrument does not change
more than a second during a day, the probable change of

the line of collimation of the meridian- mark (that is, of the

line from the centre of the lens to the centre of the small

hole) will be less in the same ratio, as the length of the

axis of the instrument is less than the focal length of the

lens. Therefore if the length of the axis is 3 feet and the

focal length of the lens is 550 feet, this change will not

exceed T|.T of a second. The chief advantage of such a me
ridian-mark is this, that it can be observed at any time of

the day, and thus any change in the position of the instru

ment can be immediately noticed and taken into account.

When there are two such meridian - marks
,
one south, the

other north of the telescope, we can find, by observing both,

the change of the error of collimation as well as that of the

azimuth, whilst the observation of one alone gives only the

change of the line of collimation and thus requires, that the

error of collimation has been determined by other methods.

If the readings for the north and south mark are a and 6,

and at another time a and 6
,
and if we take them positive,

when the middle wire appears east of the mark, then we

obtain the changes dc and da of the error of collimation

and of the azimuth by means of the equations:
a a-h(6 6)

dc^~

da-
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where dc must be taken with the opposite sign, when the

circle is East.

23. If the transit instrument has a divided circle so

that not only the transits but also the meridian zenith dis

tances of the stars can be observed, it is called a meridian

circle.

When a star is placed between the horizontal wires of

such an instrument at some distance from the middle wire,

the angle obtained from the reading of the circle is not the

meridian zenith distance or the declination of the star, be

cause the horizontal wire intersects the celestial sphere in a

great circle, whilst the star describes a small circle. There
fore a correction must be applied on this account to the

reading of the circle.

The co-ordinates of a point of the celestial sphere, re

ferred to a system, whose fundamental plane is the plane of

the equator, whilst the axis of x is perpendicular to the axis

of the instrument, are:

x = cos S cos (T ?/?), y= cos sin (r in) and z= sin .

If we imagine now a second system of co-ordinates,
whose axis of x coincides with that of the former system,
whilst the axis of y is parallel te the horizontal axis of the

instrument, and if we denote by # the angle through which

the telescope moves and which is given by the reading of

the circle, and if further we remember, that the telescope
describes an arc of a small circle, whose radius is cos c, then

the three co-ordinates of the point, to which the telescope
is directed, are:

x= cos 8
J

cos c, y= sin c, and z= sin cos c.

Now since the axes of the two systems make with each

other an angle equal to w, we obtain:

sin S= sin c sin n -f- cos c cos n sin

cos S cos (r ni)
= cos d cos c

cos S sin (r ni) = sin S cos c sin n -+- sin c cos n

and hence:

5,
, . COS S COS C

cotang o cos (T m) =
sin n sin c -4- cos n cos c sin S

This formula can be developed in a series, but since n

is always very small and c, even if the star is observed on
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the most distant lateral wire, is never more than 15 or 20

minutes, we can write simply:

tang 8= tang cos (r w),

and from this we obtain according to formula (17) of the

introduction :

8= 8 tang \(r wz)
2
sin 2 8 -+- ^ tang (r ?w)

4
sin 4 S.

This formula is still transformed so that the coefficients

contain the quantities

2 sin 4 (t w)
2 and 2 sin \(t in)*

because these quantities can always be taken from tables.

(V. No. 7).

For this purpose we write instead of

tang ^ (r m)
2

now:
sin \- (r 7w)

2

1 cos I (r m)
2

and develop this into the series:

sin 4- (r w)
2 H~ sin \ (T wt)

4
&quot;~+~

and since:

\ tang \ (r in)
4 = ?

2 sin ^ (r ni)
4
-+- . . .

,

we obtain:

8= 8 2 sin (T mY . sin 2 S 2 sin ^ (r m)* cos
2
sin 2 8,

the first term of which formula is usually sufficient.

The sign of this formula corresponds to the case, when
the division of the circle increases in the direction of the

declination and when the star is observed at its upper cul

mination.

When the division increases in the opposite direction,

the corrected reading is :

8 -+- 2 sin };(r m)
2

. ^ sin 2 S -+- 2 sin \(r )
4 cos e?

2
sin 2 8.

Since the circle is numbered in the same direction from

to 360, it follows, that if for upper culminations the di

vision increases in the direction of the declination, the re

verse takes place for lower culminations, and hence also

for lower culminations the sign of the formula must be

changed.

We can find the formula also in the following way.

Let PO Fig. 18 represent the meridian and a star, whose
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Fig. is. hour angle shall be t. If we direct the telescope
to this star and bring it on the horizontal or axial

wire, we observe the polar distance P0\ where
the point is found by laying through an arc

of a great circle perpendicular to PS. Then we
have PO = 90 8

,
P0= 90 8 and hence:

tang = cos t . tang .

Now we will further suppose, that the axial

wire is not parallel to the equator, but that it

makes an angle equal to 90 -+- J with the merid

ian, where J is called the inclination of the wire;
then we observe the polar distance

PO&quot;, where 0&quot;

is found by laying through a great circle mak
ing with the meridian an angle equal to 90 -+- J. If we
denote again the observed declination by &amp;lt;V,

and take 00&quot;= c,

we have:

sin c sin .7= sin 8 cos S -j- cos 8 sin S cos t

sin c cos .7= cos 8 sin t,

and therefore:

tang S tang S I cos t sin t ~r,
L sin d J

= tang S cos (t-{-y),

where :

J_
y~

sin 8

When J=0, the formula gives simply the reduction to

the meridian. But this reduction plus the correction for the

inclination of the wires is, if we take only the first term of
the series:

8 8 = l sin2 S.2sml(t+y)*.
In order to determine the inclination of the wires, a star

near the pole is observed at a great distance from the middle
wire on each side of it. For, every such observation gives
an equation of the form :

8= 8 ^ sin 2 8 . 2 sin t
2

cos 8 sin t . J,

where also the second term, dependent on sin | /
4
,

can be

added, if it is necessary. Therefore from two such equa
tions we can find 8 and J, or when more than two obser
vations have been made, we can find the most probable va-
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lues of J and AC) ,
if we assume for S the approximate value

J so that d= c) -+- A $ The above equation becomes then :

= S S -+- \ sin 2 &amp;lt;? . 2 siri .U 2 + A S -h cos tf sin &amp;lt; . J.

It is also easy to find the correction which must be

applied to the observed declination in case, that a body has

been observed, which has a parallax and a proper motion,

for instance, the moon. If such a body has been observed

on a lateral wire, we have the equations:

cos c cos 8 = cos S cos (r //?.)

cos c sin = cos S sin (T m) sin w H- sin S cos n.

Here c) is the apparent declination of the observed point

of the limb, and T is the east hour angle of that point at the

time of observation, whilst S is the declination given by the

reading of the circle. But if we denote by S the apparent

declination of the centre of the moon, and by T its apparent

hour angle, we have:

cos c cos (S =f= x) = cos S cos (T m)

cos c sin ( =p x) == cos 8 sin (r ni) sin n -j- sin S cos r?,

where
siri x cos c= sin h

if h is the apparent semi-diameter *), and where the upper

or lower sign must be taken accordingly as the upper or

lower limb has been observed. If we substitute in these

equations sin h instead of sin x cos c
,

eliminate cos c cos x

and multiply the resulting equation by A 5
which denotes the

ratio of the distance of the body from the place of obser

vation to the distance from the centre of the earth, we find:

=t= A sin h = A cos 8 sin S cos (r ni)

A cos S cos 8 sin (r ni) sin n

A sin S cos 8 cos n,

or since the quantity sin (r m) sin n can be neglected and

cos n be taken equal to unity:
=1= A sin h = A cos 8 . sin 8 cos (r ni)

, . c\ c\

A sm . cos .

If we express now the apparent quantities in terms of

the geocentric quantities, taking:

*) We find this immediately from the right angled triangle between the

pole of the circle of the instrument, the centre of the moon and the ob

served point of the limb, the angle at the pole being x and the opposite

side h .
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A sin h
j= sin h

A cos S= cos d () sin n cos
&amp;lt;p

A sin 8= sin &amp;lt;? o sin TT sin
&amp;lt;p ,

we easily find:

=*= sin h
(&amp;gt;

sin n sin
(90

$ )

= sin (S &amp;lt;T ) cos S sin j (r )
2

7

Now if the time of observation is
6&amp;gt;,

and the time of

culmination of the moon is @
,
we have:

r= 6&amp;gt;-6&amp;gt; .

But when the body has a proper motion and /, denotes

the increase of the right ascension in one second, we have:

T== 9-0 )(i-;i).i5,

if O is expressed in seconds of time.

Now if we neglect the small quantity m in (r m)
2

and take :

sin p= Q sin n sin
(tp

$ ),

we have:

sin (* -* )
= sin p=Fsin A sin 2&amp;lt;?

(6&amp;gt;- &amp;lt;9 ) (1 -A) a

20g|^
And since:

sin (jo
=b A) = sinjw

== sin h 2 sin
/&amp;gt; | A- =p 2 sin h sin

1;&amp;gt;

2
,

and hence:

sin p == sin A = sin (p == A) d=L sin ;^ sin h

we finally obtain:

,
= -+- p =p h =p sin p sin A

This is the formula given by Bessel in the introduction

to the Tabulae Ixegiornontanae pag. LV. The last term of

this formula corresponds to the first term of the formula for

the reduction to the meridian, which was found before, mul

tiplied by (1 A)
2

.

This true declination of the moon s centre corresponds
to the time 0. If we wish to have it for the time &

,
we

must add the term:

7 V

where is the change of the declination in the unit of time.

31
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24. In order that the observations with the meridian

circle may give the true declinations or zenith distances, the

readings of the circle must be corrected for the errors of divi

sion and for flexure, which must be determined according
to No. 7 and 8 of this section. Finally the zenith point or

the polar point of the circle must be known. In order to

find the latter, the pole-star must be observed at the upper
and lower culmination. When the readings are freed from

refraction, and from the errors of division and from flexure,

the arithmetical mean of the two readings gives the polar

point, provided, that the microscopes have not changed their

position during the interval between the observations. But

since it is necessary for examining the stability of the mi

croscopes and for determining any change of their position,

to observe the nadir point at the time of the two observa

tions, it is at once the most simple and the most accurate

method, to refer all observations to the zenith point, that is,

to determine the zenith distances of the stars, and to deduce

from them the declinations with the known value of the

latitude.

As has been shown before, the nadir point is determined,

by turning the telescope towards the nadir and observing the

image of the wires reflected from an artificial horizon, which

must be made coincident with the wires themselves. Usually
such an instrument has two axial wires parallel to each other

at a distance of about 10 seconds, and in making an obser

vation the instrument is turned, until the star is exactly half

way between these wires. For determining the nadir point
the reflected images of the two wires are placed in succes

sion half way between the wires, and then the arithmetical mean
of the readings of the circle in these two positions of the

telescope gives the nadir point. The observations are then

freed from flexure according to the equations (Z?) in No. 8

of this section and from the errors of division. In order to

obtain the utmost accuracy, it would be necessary to deter

mine the nadir point after every observation of a star; but

since the displacements of the microscopes are only small

and are going on slowly, it is sufficient, to determine it at

intervals, and then to interpolate the value of the nadir point
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for every observation. In this way the errors produced by

any changes of the microscopes are entirely eliminated, and

since the observation of the nadir point is so simple and so

accurate, this method for determining zenith distances is the

most recommendable.

/ Horizontal collimators, of which one is north, the other

south of the telescope, can also be used for determining the

zenith point. For this purpose the collimators are constructed

so, that the line of collimation of the telescope is also the

axis of the instrument, the cylindrical tube of the telescope being

provided with two exactly circular rings of bell metal, with

which it lies in the Ys. These Ys have the usual adjusting
screws for altitude and azimuth, and the wire-cross is like

wise furnished with such screws, by which it can be moved
in the plane perpendicular to the axis of the telescope. When the

collimators have been placed so that their line of collimation

coincides nearly witli that of the telescope, the line of colli

mation of the telescope of each collimator is rectified so that

it coincides with the axis of revolution. This is accompli
shed by directing one collimator to the other and turning it

180 about its axis. If the point of intersection of the wires

after this motion of the telescope remains in the same posi
tion with respect to that of the other collimator, then the

line of collimation is rectified; if this is not the case, the wire-

cross is moved by means of the adjusting screws, until the

point of intersection remains exactly in the same position
when the telescope is turned 180. The inclination of the

axis and hence also of the line of collimation is then found

by means of the level, and since the collimator can be re

versed so that the object glass is on that side on which the

eye-piece was before, the inequality of the pivots can be de

termined and taken into account in the usual way. In order

then to find the horizontal point of the circle, the collimator

is levelled, and the telescope of the meridian circle turned
until its wire-cross is coincident with that of the collimator.

In this position the circle is read. The same operation is

repeated after the collimator has been turned 180 about its

axis, to eliminate any error of the line of collimation. Then
the same observations are repeated with the other collimator,

31*
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and when a and 6 denote the arithmetical means of the read

ings of the circle for each collimator, ^ is the zenith point

of the circle, if the collimators are at equal distances from

the axis of the instrument *). If x is the elevation of the

object-end of the collimator, corrected already for the inequal

ity of the pivots, then the zenith distance of the telescope

when it is directed to the wire -cross of the collimator, is

90 -f- #, taking no account of the angle between the verti

cal lines of the two instruments, and hence we must sub

tract x from the reading or add it, accordingly as the divi

sion increases or decreases in the direction of the zenith

distance.

This method being more complicated and therefore pro

bably less accurate than the one mentioned before, the latter

is always preferable.

The latitude is determined best by direct and reflected

observations of the circumpolar stars. For we obtain from

the observations made at one culmination according to the

equations (#) in No. 8 of this section:

and a similar equation is found for the lower culmination.

The arithmetical mean of these two equations gives the lati

tude independent of the declination of the star, but affected

with those terms of flexure which depend on the sine of

2
,
4 etc.

,
the first of which can be determined by the

method given in that No. The angle between the vertical

lines of the instrument and the artificial horizon must like

wise be taken into account, as was shown in the same No.

V. THE PRIME VERTICAL INSTRUMENT.

25. If we observe the transit of a star and its zenith

distance with a transit circle mounted in the plane of the

prime vertical, we can determine two quantities, namely a

*) The readings must be corrected for flexure, if there are any terms,

which have an influence upon the mean of the two readings.
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and fi or
rp.

But since the observation of zenith distances

in this case is more difficult, usually only the transits of

stars are observed with such an instrument, in order to find

the latitude or the declinations of the stars. For this pur

pose a method is required, by which the true time of pas

sage over the prime vertical can be deduced from the ob

served time and the known errors of the instrument.

We will suppose, that the axis of the instrument pro
duced towards north meets the celestial sphere in a point (),

whose apparent altitude is b and whose azimuth, reckoned

from the north point and positive on the east side of the

meridian, is k. If we imagine now three axes of co-ordinates,

of which the axis of z is perpendicular to the horizon, whilst

the axes of x and y are situated in the plane of the horizon

so that the positive axis of x is directed to the north point

and the positive axis of y to the east point, then the three

co-ordinates of the point Q are:

z = sin b
, y= cos b sin k and x= cos b cos k.

Further if we imagine another system of co-ordinates,
whose axis of z is parallel to the axis of the heavens, and

whose axis of y coincides with the corresponding axis of the

first system so that the positive axis of x is directed to the

point in which the equator intersects the meridian below the

horizon, then the three co-ordinates of the point (), denoting
its hour angle (reckoned in the same way as the azimuth)

by M, and 180 minus its declination by ??, are:

z= sin n
, y= cos n sin m

,
x= cos n cos m,

and since the axes of z in both systems make with each other

an angle equal to 90 y, we have the equations:

sin b= sin n sin
y&amp;gt;

cos n cos m cos
y&amp;gt;

cos b sin k= cos n sin m

cos b cos k= cos n cos m sin y -+- sin n cos cp

and
sin n= cos b cos k cos

rp -+- sin b sin cp

cos n sin m= cos b sin k

cos n cos m= cos b cos k sin cp sin b cos cp.

If we then assume, that the line of collimation of the

telescope makes with the end of the axis towards the circle

an angle equal to 90-j-G%

,
and that it is directed to an ob

ject, whose declination is d and whose hour angle is
,
then
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the three co-ordinates of this point with respect to the equa
tor and supposing the axis of x to be directed towards

north
,
are :

z= sin
, y = cos sin t and x = cos S cos t,

and if we take the axis of x in the plane of the equator, but

in the direction of the axis of the instrument:

z= sin

x== cos S cos (t ni).

Now if we imagine another system, of which the axis

of y coincides with that of the former system, whilst the

axis of x coincides with the axis of the instrument, we have:

x sin c,

and since the angle between the axes of x in the two systems
is n, we have:

sin c= sin S sin n -f- cos S cos (t m) cos n.

We can deduce these formulae also from the triangle

between the pole, the zenith and the point Q, towards which

the side of the axis opposite to that on which the circle is,

is directed. In this triangle we have, when the circle is

north, P0=180 r/5 w, ZQ=W-\-b and PZ= 90 9,
whilst the angle QPZ = m and QZS=k. The formula for

sine is deduced from the triangle PSQ, where S is that

point of the sphere of the heavens, to which the telescope
is directed, and in which we have 5=90 c, when S is

west of the meridian and SP=90 r&amp;gt;

, PQ= 180&quot;
cp n,

whilst the angle SPQ= t m.

From the last equation we obtain by substituting for

sin n, cos n cos m and cos n sin m the values found before, and

taking instead of the sines of 6, k and c the arcs themselves

and instead of the cosines unity:

c = sin S cos
&amp;lt;p

-+- cos sin 90 cos t

[sin sin
y&amp;gt;

-f- cos S cos (p cos t] b

-(- cos sin t . k,

and since:
sin S sin

if -+- cos S cos y cos t= cos z

and
cos S sin t= sin z sin A,

or, since A is nearly 90:
cos sin t= sin z,

we obtain, when the star is west of the meridian :

c-\- b cos z k sin z = sin cos (f -f- cos S sin cp cos t.
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If then is the true sidereal time, at which the star

is on the prime vertical, and if therefore a is the hour

angle of the star at that moment, we have:

tang
cos (O )= &amp;gt;

tang (p

or:
= sin 8 cos

rp -j- cos sin cp cos (0 a).

Subtracting this equation from the other, we obtain:

c -t- b cos z k sin z= cos 8 sin
&amp;lt;p

. 2 sin | [0 t] sin [0 a -f- t
J.

Now since c, 6 and A are small quantities and hence

a and t are nearly equal, we can put :

sin t instead of sin 4- [0 a-\-t]

and
|[0 a

t]
instead of sin ^[0 t]

and then, remembering that

cos 8 sin t= sin z

we obtain:
c 6 fc

a= t -+-
------

:

--h - -
-.
----

sin z sm
&amp;lt;/? tang 2 sin 7? smy

If then a star has been observed on the middle wire of

the instrument at the clock -time T, the true sidereal time

will be T -h A *
?
and the hour angle :

Therefore we have:

sin z sin (p tang 2 sin (p sm&amp;lt;f&amp;gt;

This formula is true, when the circle is North and the

star West. When the star is East, we have:

cos S sin t= sin z.

Therefore, since the signs of the quantities c, b and k

remain the same, we must change in the above formula the

signs of the divisors sin z and tang & and thus we have :

_ c b Jc ( Circle North )

sin z sin rp tangs sin 9? siny Star East
*

When the circle is South, the quantities b and c have

the opposite sign, and therefore we have:

&amp;lt;9 =T+A ,_
c _J_____L

jCircle

South)

sin z sin
(p tang z sin y sin

99
Star West 5

and

^_ c b k ( Circle South
j

sin z sin y tang z sin 90
sin 9?

Star East &amp;gt;
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If we know & and a
,
we obtain by means of the for

mula :

tang &amp;lt;p

cos (0 )
= tang

either
&amp;lt;jp,

when the declination of the star is known, or the

declination, when the latitude is known. If and & be

the times, at which the star was on the prime vertical east

and west of the meridian, then l(@ _ 0) will be the hour

angle of the star at those times, and therefore we have :

tang (p cos Y (0 &) = tang $,

so that it is not necessary to know the right ascension of

the star, in order to find
cf

or 3. When the instrument is

reversed between the two observations, so that one transit

is observed when the circle is North, the other when the

circle is South, then we have:

and hence in that case it is not necessary to know the error

of the clock nor the errors of the instrument except the level-

error. An example is given in No. 24 of the fifth section.

26. The formulae given before are used
,
when the in

strument is nearly adjusted so that 6, c and k are small quan

tities, whose squares and products can be neglected. But

this method of determining the latitude by observing stars

on the prime vertical is often resorted to by travellers, who
sometimes cannot adjust their instrument sufficiently and thus

make the observation at a greater distance from the prime
vertical. In that case the formulae given above cannot be

employed. But we found before the rigorous equation:

sin r, = sin 8 sin n -+ cos S cos n cos (t m\

or if we substitute the values of sin n, cos n cos m and cos n sin m
sin c= sin !&amp;gt; sin S sin rp sin h cos S cos

tf
cos t cos t&amp;gt; cos k sin 8 cos

&amp;lt;p

-f- cos b cos k sin
y&amp;gt;

cos 8 cos t -+- cos t&amp;gt; sin /,- cos S sin t.

Now if the observation were made on the prime vert

ical, we should have:

sin 8= cos z sin y, cos 8 cos /= cos z cos (f

and
cos 8 sin t= sin z.

But since we assume, that the instrument makes a con

siderable angle with the prime vertical, we will introduce the

following auxiliary quantities:
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sin S= cos z sin cp

cos 8 cos t= cos 2 cos cp

cos $ sin = sin 2
,

by means of which the formula for sin c is transformed into :

sin c= sin b cos 2 cos (cp &amp;lt;p
} -+- cos b cos /; cos 2 sin

(cp 9- )

-f- cos b sin A: sin 2
,

so that we obtain:

_ sin c sec 2 tang b tang fc tang 2

cos 6 cos A; cos
(cp y ) cos k cos

(&amp;lt;p y )

We see from this formula, that it is best to observe

stars which pass as nearly as possible by the zenith, because

in that case, even if k is not very accurately known, we can

obtain a good result for the latitude. And observing the

star on the east and west side in the two different positions

of the instrument, we can combine the observations so, that

the errors of the instrument are entirely eliminated. For the

above formula is true when the circle is North and the star

West. For the other cases we find the formulae in the same

way as before, taking z negative when the star is East, and

we have:

,
sin c sec z tang b tang A: tang2

;

( Circle North)

cos b cos k cos (cp cp} cos k cos
(cp cp } Star East )

,
sin c sec z tang b tang tang2

(

^Circle South)

cos ft coskcos((p cp } cos k cos (cp cp }
I Star West )

,
sine sec z tang b tang k tangs ( Circle South)

cos b cos A: cos
(cp cp } cos k cos (cp &amp;lt;f }

&amp;lt; Star East

Therefore when we reverse the instrument between the

observations, and compute tp y from each observation, the

arithmetical mean is free from all errors of the instrument

except the level -error. If we cannot observe the same star

east and west of the meridian, we may observe one star east

and another star west of the meridian after the instrument

has been reversed. If we choose two stars, whose zenith

distances on the prime vertical are nearly equal, at least a

large portion of the errors of the instrument will be elim

inated, and the accuracy of the result for the latitude depends
then merely on the accuracy with which

ff
has been found.

But we have:
. tanc.- S

tang en = ,
&quot; 7

cos t
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therefore if we write the formula logarithmically and diffe

rentiate it, we have:

dtp
1 = Ts5 dS -h -J-

sin 2 OP tang / dt.
sin 20

From this formula we see again, that it is best to ob
serve stars which pass over the prime vertical near the zenith.

For since we have :

tangs
tang t= --- -

,

COS
(f

we see that the coefficient of dt is equal to sin
cp tangs ,

and
that it is very small for stars near the zenith, and since for

such stars # is nearly equal to
f/ ,

an error of the decima
tion is at least non increased.

If the observations have been made on several wires, it

is not even necessary, to reduce them to the middle wire,
an operation which for this instrument is a little troublesome,
but we can find a value of the latitude by combining two

observations made east and west of the meridian, but on the

same wire *).

If we write the formula for tang (rf cf ) in this way :

, ,.
sin c . tang b

sin (cp g )
= ---- sec z -\ cos (cp on tang k tang z

,

cos 6 cos k cos k

then develop sin
(r^ &amp;lt;^ ) 9

and substitute for sin
q&amp;gt;

and cos
cp

the values :

sin sec z and cos S cos t sec z

and take cos
(9: &amp;lt;p ) equal to unity, we obtain:

sin (ffo) = cos o sin cp . 2 sin \ t~ -f-
-

cos b cos k

tang b
cos 2; tang k sin z .

cos

When 6, c and A are small quantities, we thus find the

following convenient formulae for determining the latitude by
stars near the zenith, writing c -+- f instead of c:

cp
= sin cp cos . 2 sin ^ t

2

=*=/-+- b -+- c k sin ~ [Circle North, Star West]

-+- b -+- c -h k sin z [Circle North, Star East]

b c k sin z [Circle South, Star West]
b c -f- k sin .2 [Circle South, Star East].

*) For when we observe on a lateral wire, whose distance is /, it is

the same as if we observe with an instrument whose error of collimation is

c-H/.
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With the prime vertical instrument at the observatory
of Berlin the star ft Draconis was observed in 1846 Sept. 10:

Circle North, Star East.

/ // /// IV V VI VII

Circle South, Star West.

l 5s.O, 54 &quot; 59s .7^ 50&amp;gt;n47 .8, 17^45 28^ .0, 37 3Ss .0.

The inclination of the instrument was:

Circle North = 4- 4&quot; . 64

Circle South = 3 .49.

Further was:
a= 17h26ioSs. 59

=52 25 27&quot;. 77

&t= - 54*. 52,

and the wire -distances expressed in arc were:

/ 12 31&quot;. 16

// 6 43 . 78

/// 3 25 .17

V 3 23 . 14

VI 6 34 . 21

VII 12 22 . 32.

Now in order to compute y #, we must know already
an approximate value of

cf. Assuming:
y&amp;gt;

=
52&quot; 30

16&quot;,

we have:

log sin
&amp;lt;p

cos 8= 9 . 684686,
and we obtain:

Circle North.
/// IV V VI VII

t 8m44s.ll 17m 5s.ll 22m 29s. 11 26 ra 36s.61 32 46&quot;. 81

log 2 sin 1 1
2 2.17552 2.75807 2.99648 3.14264 3.32351

sin^ cosd 2 sin!*
2

1 12 .48 4 37 .18 7 59 .92 11 11 .94 16 59 .07

&amp;lt;f

4 37 .65 4 37 .18 4 36 .78 4 37 .73 4 36 .75,

and hence from the mean:

7 - *= 4 37&quot;. 22 + 4&quot;. 64 -+- c -+- k sin z.

Likewise we find from the observations made when the

circle was South:

&amp;lt;P

~ 8= 4 53&quot;. 53 -t- 3&quot;. 49 c k sin z,

therefore combining these two results, we find:

&amp;lt;p

= 4 49&quot;. 44

r= 52 30 17&quot;. 21

c H- k sin z= -+- 7&quot;. 58,
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This method is the very best for determining the zenith

distance of a star near the zenith with great accuracy, and

it can therefore be used with great advantage to determine the

change of the zenith distance of a star on account of aber

ration, nutation and parallax, and hence to find the constants

of these corrections. For this purpose is has been used by
Struve with the greatest success. Since the level -error of

the instrument has a great influence upon the result, because

it remains in the result at its full amount, the instrument

used for such observations must be built so, that it can be

levelled with the greatest accuracy. The instrument built for

the Pulkova observatory according to Struve s directions is

therefore arranged so that the spirit-level remains always on

the axis, even when the instrument is being reversed, so

that any disturbance of the level, which can be produced by
its being placed on the axis, is avoided. When the level is

reversed on the axis and observed in each position, b and b

are obtained; but it is only necessary to leave it in the same

position when the instrument is reversed, because the two

readings of the level give then immediately b &
,
which

quantity alone is used for obtaining the value of
y&amp;gt;

r?.

A difficulty in making these observations arises from the

oblique motion of the stars with respect to the wires. A
chronograph is therefore very useful in making these obser

vations, since it is easier to observe the moment when a star

is bisected by the wire, than to estimate the decimal of a

second, at which a star passes over the wire.

If the constant of aberration, that of nutation, or the

parallax of a star is to be determined by this method, such

stars must be selected, which are near the pole of the eclip

tic, because for such the influence of these corrections upon
the declination is the greatest.

27. The formulae by means of which the observations

on a lateral wire can be reduced to the middle wire, are

found in the same way as for the transit instrument. For

when we have observed on a lateral wire, whose distance is

/&quot;,

it is the same as if we have observed with an instrument,

whose error of collimation is c -f- f. Therefore we have the

equation :
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sin (c -f-./O
= sin $ sin n -f- cos S cos ?? cos (t ?n) ,

where t is the hour angle of the star at the time of the ob

servation on the lateral wire. If we subtract from this the

equation :

sin c= sin S sin n -f- cos 8 cos n cos (/ wz),

we obtain:

2 sin \ /cos [T/+ c]
= 2 cos &amp;lt;? cos n sin -

(/ t&quot;)
sin

[ (z -+- 1
~) m].

Now since f is only a few minutes, we can put f in

stead of the first member of the equation and thus we find:

cos S sin -j (*+0 cos n cos m cos S cos \ (&amp;lt;+/ ) cos ?i sin m
or if we substitute for cos n cos m and cos w sin m the ex

pressions given in the preceding No., we find:

2 sin -i-
(&amp;lt;

cos &amp;lt;? sin
9? sin

(f-f-&amp;lt;0 [1 6 cotang y k cotang ( + cosec y]

Therefore for reducing the observations on a lateral wire

to the middle wire we must use instead of the wire distance

f the quantity:

../ . =r
1 b cotang y&amp;gt;

k cotang J[- (t-\-) cosec y
and then we have :

2sin-H&amp;lt;-0= , . .-
cos o sin

(p sin ?(t-{- t)

In order to solve this equation we ought to know already
t . But we have:

sin
5- (t -f- = sin [z T (* OJ-

If we take then for ^ (t t ) half the interval of time between
the passages over the lateral wire and over the middle wire,
the second member of the equation is known, and we can

compute t t . When the value found differs much from
the assumed value, the computation must be repeated with

the new value. But this supposes that the value of f has

been computed before. Now in the formula for this the term
6 cotang y&amp;gt;

can always be neglected, because b will always
be very small, and likewise if k is small, and the star is not

too near the zenith, the term dependent on k can also be

neglected, so that then simply f is used instead of
/&quot;.

But
when the star is near the zenith, the correction dependent
on k can become considerably large, if k is not very small.

For we have: tang t cos ? tang *,
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and since f is small, we also have approximately :

tang t cos
(f&amp;gt;

= tang z

and hence :

tang \ (t -j-
t ) cos

cp
= tang ^ (z +- z )-

Therefore we can write instead of the factor of k:

cotang (f cotang \ (z -+- z ),

and thus we see, that the correction can be large, when the

star is near the zenith.

Instead of solving the equation

2 Sin 4 (t
~ =

y-;cos sin
rp

sin r, (t -f- t )

by an indirect method, we can develop it in a series. For
we can write it in this way:

cos t cos t= ~ -
1

cos o sm 9?

and from this we obtain according to formula (19) in No. 11

of the introduction:

f r f T2

t =t Jr cotang t
-

cos &amp;lt;) sm
97 sin Z |_cos o sin 7 sin t_\

r f i 3

-
i v4- (1 -h 3 cotang t

2
}.

[_cos o sin
(f gmlj

Now when the instrument is nearly adjusted, we have:

cos S sin t= sin z,

and hence:
/ r /&quot;

t = t A cotang /

sm z sm
9? (_sm z sin

[/
-is

------

sin z sin
cp J

Since this formula contains also the even powers of
/&quot;,

we see, that wires, which are equally distant from the middle

wire on both sides of it, give different values of t t. For

when f is negative, we have:

t = t -+- - ~-
4- cotang t

-

sm z sm
9^ \_sin z sin (p J

r /&quot; i 3

I j
r i

|
*&amp;gt; j 1 I

*

|_sin z sin 90 J

In order to compute this series more conveniently, we
can construct a table

,
from which we take the quantities

sin
(f

sin a, \ cotang i, and ~
(1 -f- 3 cotang

2
) with the argu

ment r) .

But this series can be used only, when the star is far

from the zenith, because if the star is near the zenith these
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terms of the series would not be sufficient and some higher
terms would come into consideration.

In this case, when the zenith distance is small, the fol

lowing method for computing t can be used with advantage
We had:

f
cos t = cos t-\- .

cos o sin
fp

If we subtract both members of the equation from unity
and also add them to

it, we obtain, dividing the two result

ing equations:

2 cos i t- cos 8 sin y H- f
1

Now since:

tang 8
cos t

tang (fwe have:

l-cos;= 2sin!^== sin(

f-^
cos o sin (i)

and

, p co
therefore we get:

^.^^sin^-^
sin

(9,+ 8)

and if f is negative:

vvalues of the wire-distances are determined by ob
serving a star near the zenith on all the wires. If we com
pute for each observation the quantity:

sin
(f cos 8 . 2 sin -f t

2

,

the differences of these quantities give us the
wire-distances,

because we have for stars near the zenith:

&amp;lt;p

8= sin
y&amp;gt;

cos 8 . 2 sin t
2

==/-f- c + h -f- k sin z.

Thus in the example of the preceding No. the follow
ing wire -distances would be obtained from the observations
made when the circle was North:

///== 3 24&quot;. 70

r= 3 22 .74

VI= 6 34 .76

r//=12 21 .89.

In 1838 Oct. 2 a Bootis was observed with the prime
vertical instrument at the Berlin observatory:
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Circle South, Star West.

7 77 777 7F V VI VII

a Bootis 44. 7 8 s
. 3 50 s

. 2 19 h 2 32s.2 13 s
. 8 55 s

. 4 1&quot; 19 S .2.

The wire -distances expressed in time were then:

7= 51 s
. 639

77=25 .814

777=12 .610

F=13 .305

F7=26 .523

VII=52 .397;

moreover we have:

A*=+ 47&quot;. 5,
= 14 h 8 16s. 5, = -+- 20 1 39&quot;,

y&amp;gt;

= 52 30 16&quot;.

The quantities 6 and k were so small, that it was not

necessary to compute the reduced wire - distances
/&quot;

. Then

we have:

/ = 4 h 55m 3s . 2 = 73 45 48&quot;. 0, log cos 8 sin t sin
9?
= 9 . 85244

and log cotang t= 9 . 14552.

Now in order to compute the second term of the series,

fwe must express - in terms of the radius, that is,
sin

&amp;lt;f

cos o sm t

we must multiply it by 15, and divide it by 206265. Then

we must square it, and in order to express the term in sec

onds of time, we must multiply it by 206265 and divide by
15. Thus the factor of:

r 1 IT
|_sin

&amp;lt;f

cos sin tj

will be: ,_. cotang 2,

the logarithm of the numerical factor being 5.00718. Like

wise the coefficient of the second term, expressed in seconds

of time, will be:

But in this case this term is already insignificant. Now if

we compute for instance the reduction for wire /, we have,

since f is negative:

72s. 533
sin cp cos o suit

tt.icotang*
* =-f- 0.053,

26o LCOS o sin t sinyj206265

hence the reduction to the middle wire is:

7= I n 12s.48.
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In the same way we find:

II= 36*. 25

///= 17 .71

F=H- 18 .69

F/=-f-37 .24

F//=H-73 .54,

and hence the observations on the several wires reduced to

the middle wire are:

19 ! 2&amp;gt;32s.22

32 .05

32 .49

32 .20

32 .49

32 . 64

32 .74

mean value 19 h 2m 32 s
. 40.

In order to give an example for the other method of

reduction, we will take the following observation of a Persei :

Circle South, Star West.

/ // III IV V
a Persei 4&quot; 26* . 2 38* . l 43 s .O 5 U &quot; 49 s

. 2 59 ni 52 s
.

VI VII

58 in 55* . 2 57 2s . Q.

If we compute first:

sin (w )

tang 7 /- = .-^ ,

sin
(y&amp;gt;-+~o)

taking :

5= 40 16 26&quot;. 7

and

y&amp;gt;

= 52 30 16&quot;.

we find :

; = 26 58 58&quot;. 88.

If we compute the reduction for the first wire, we have

f negative, and hence we must compute the formula:

. .
,

sin (OP ~) -+- /

tang, t- = --7 ~ -
sm(y&amp;gt;-t-)-h/

Now since

/= 51s. 639= 12 54&quot;. 585,

or expressed in terms of the radius
/&quot;= 0.0037553, we find :

^ = 27 53 G&quot;. 72,

hence :

t t 54 7&quot;. 84

= O 11 3 36*. 52.

32
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Likewise we find for the other wires:

//=lm 49s. 05

/// 53 . 48

V 56 .85

VI I 53 .85

VII 3 46 .77.

However for this star the series is used with greater

convenience, since the influence of the third term for wires

/// and V amounts to nothing and for wires / and VII it is

only
s

. 12.

28. It must still be shown, how the errors of the in

strument are determined by observations.

The inclination of the axis is always found by means

of a spirit-level. The collimation- error can be determined

by observing stars near the zenith east and west of the merid

ian in the two different positions of the instrument. Or we
can obtain it by combining the observations of the same star

east and west of the meridian, made in the same position of

the instrument. For we have, when the circle is North:

= r-f- A t
---

.

-

[Star East]
sin z sin (f sin 90

6&amp;gt; =r -hA*-h
C

.

---
. [Star West],

sin z sin
(f

sin
cp

if we assume, that the times of passage over the middle wire

have been corrected for the error of level. Hence we have:

c= sin
&amp;lt;p

sin z [, (& &} \ (T 71

)].

where the value of \ (6&amp;gt; 6f) is obtained by means of the

equation :

tangy

or more accurately, taking | (6f &) = ,
from the equation:

sin (cp 8}
tang 1 1- = -r-rr-r-jK

sin
(y&amp;gt;-ho)

In order that the errors of observation in T and T may
have as little influence as possible on the determination of c,

we must select such stars which pass over the prime vertical

as near as possible to the zenith.

Adding the two equations for and 6&amp;gt;

,
we find:

k= sin y [-k(T H- T) 4- t % (0 -f- )],
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or since f (Q -f- )
= a :

k= sin
&amp;lt;p [i (T-{- T&quot;) 4- A* ].

For the determination of the azimuth k it is best to take

stars, which pass over the prime vertical at a considerable

distance from the zenith, because their transits can be ob

served with greater precision. With the prime vertical in

strument at the Berlin observatory the following observations

were made in 1838:

Circle South:

June 25 Bootis West 19 h 3m 1 s
. 44

26 Bootis East 9 12 54 .49,

these times being the mean of the observations on seven

wires. On June 25 the level -error was 6 = -f-6&quot;.42 and
on June 26 6 = 4- 7&quot;. 98. If we correct the times by add

ing the correction -+-
6

,
we must add to the first

10 tang.z smr/&amp;gt;

7

observation s
. 26, and add to the second -4- s

. 32 so that

we obtain :

T = 19 h 3 Is. 18

T= 9 12 54 .81.

Hence we have:

i-(r-hr) = 14 h 7 &quot; 58. 00,

and since:

A&amp;lt;
= -+- 20&quot; . 27 and = 14 h S 16* . 48

we find :

^= -his. 42.

Note. Compare on the prime vertical instrument: Encke, Bemerkungen
iiber das Durchgangsinstrument von Ost nach West. Berliner astronomisches

Jahrbuch fur 1843 pag. 300 etc.

VI. ALTITUDE INSTRUMENTS.

29. The altitude instruments are either entire circles,,

quadrants or sextants. The entire circle is fastened to a

horizontal axis attached to a vertical pillar. By means of

a spirit-level placed upon the horizontal axis, the vertical

position of the pillar can be examined and corrected by means
32*
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of the three foot -screws. The adjustment is perfect, when
the bubble of the level remains in the same position while

the pillar is turned about its axis. By reversing the level

upon the horizontal axis, the inclination of the latter is found,
which can also be corrected by adjusted screws so that the

circle is vertical.

The horizontal axis carries the divided circle, which

turns at the same time with the telescope, whilst the con

centric vernier circle is firmly attached to the pillar. When
the circle is read by means of microscopes, the arm to which

the microscopes are fastened is firmly attached to the pillar

and furnished with a spirit-level. By observing a star in

two positions of the horizontal axis which differ
180&quot;,

double

the zenith distance is determined in the same way as with

the altitude and azimuth instrument, and everything that was
said about the observation of zenith distances with that in

strument can be immediately applied to this one.

Since the telescope is fastened at one extremity of the

axis, this has the effect, that the error of collimation is va

riable with the zenith distance, so that it can be assumed to

be of the form c -f- a cos a. With larger instruments of this

kind the error of collimation in the horizontal position of

the telescope can be determined by two collimators, and the

error in the vertical position by means of the collimating

eye -piece, as was shown in No. 22. The difference of the

two values obtained gives the quantity a, which however will

always amount only to a few seconds, and hence have no

influence upon the determination of the zenith distances.

Note. The quadrant is similar to the above instrument, but instead of

an entire circle it has only an are of a circle equal to a quadrant, round

the centre of which the telescope fastened to an alhidade is turning. When
such a quadrant is firmly attached to a vertical wall in the plane of the

meridian, it is called a mural quadrant. These instruments are now anti

quated ,
since the mural quadrants or mural circles have been replaced by

the meridian circle, and the portable quadrants by the altitude and azimuth

instruments and by entire circles.

30. The most important altitude instrument is the

sextant, or as it is called after the inventor, Hadley s
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sextant *). But this instrument is used not only for measur

ing altitudes, but for measuring the angle between two ob

jects in any inclination to the horizon; and since it requires

no firm mounting, but on the contrary the observations are

made, while the instrument is held in the hand, it is especially

useful for making observations at sea, as well for determin

ing the time and the latitude by altitudes of the sun or of

stars, as for determining the longitude by lunar distances.

The sextant consists of a sector of a circle equal to about

one sixth of the entire circle, which is divided and about

the centre of which an alhidade is moving, carrying a plane-

glass reflector whose plane is perpendicular to the plane of

the sector and passing through its centre. Another smaller

reflector is placed in front of the telescope; its plane is like

wise perpendicular to the plane of the sextant and parallel

to the line joining the centre of the divided arc with the

zero of the division. The two reflectors are parallel when

the index of the alhidade is moved to the zero of the divi

sion. Of the small reflector only the lower half is covered

with tinfoil so that through the upper part rays of light from

an object can reach the object glass of the telescope. Now
when the alhidade is turned, until rays of light from another

object are reflected from the large reflector to the small one

and from that to the object glass of the telescope, then the

images of the two objects are seen in the telescope; and

when the alhidade is turned until these images are coincident,

the angle between the two reflectors, and hence the angle

through which the alhidade has been turned from that position

in which the two reflectors were parallel, is half the angle

subtended at the eye by the line between those two objects.

First it is evident, that when the two reflectors are par

allel, the direct ray of light and the ray which is reflected

twice are also parallel. For if we follow the way of these

rays in the opposite direction, that is, if we consider them

as emanating from the eye of the observer, they will at first

*) In fact Newton is the inventor of this instrument, since after Hartley s

death a copy of the description in Newton s own hand -writing was found

among his papers. But Hadley first made the invention known.
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coincide. Then one ray passes through the upper uncovered

part of the small reflector to the object A. If a is the angle,

which the direction of the two rays makes with the small

reflector, then the other ray after being reflected makes the

same angle with it, and since the large reflector is parallel

to the small reflector, the angle of incidence and that of re

flection for the large reflector are also equal to . Hence

this ray will also reach the object A, if this is at an in

finitely great distance so that the distance of the two reflec

tors is as nothing compared to the distance of the object.

But when the angle between the large and the small

reflector is equal to
; ,

the ray whose angle of reflection from

the small reflector is a
,

will make a different angle, which

we will denote by /^, with the large reflector. But in the

triangle formed by the direction of the two reflectors and by
the direction of the reflected ray we have:

180 -f-y-h/?= 180

or:

y= a p.

The angle of reflection from the large reflector is then

/?, and the direction of this twice reflected ray will make
with the original direction of the ray emanating from the

eye an angle ,
which is equal to the angle subtended by

the line between the two objects, which are seen in the tel

escope. But in the triangle formed by the direct ray, the

direction of the ray reflected from the small reflector and

that of the twice reflected ray, we have:

180 2 a H-&amp;lt;? +2/3=180,
and hence we have:

S= 2a 2p
or:

d=2y.
The angle between the two objects which are seen

coincident in the telescope is therefore equal to double the

angle, which the two reflectors make with each other and

which is obtained by the reading of the circle. Hence for

greater convenience the arc of measurement is divided into

half-degree spaces, which are numbered as whole degrees,
and thus the reading gives immediately the angle between

the two objects.
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When altitudes are observed with the sextant, an arti

ficial horizon, usually a mercury horizon, is used, and the

angle between the object and its image reflected from the

mercury is observed, which is double the altitude of the ob

ject. But at sea the altitudes of a heavenly body are ob

served by measuring its distance from the horizon of the sea.

In this case the altitude is measured too great, since

the sensible horizon on account of the elevation of the eye

above the surface of the water is depressed below the ratio

nal horizon and is therefore a small circle. It is formed by
the intersection of the surface of a cone, tangent to the sur

face of the earth and having its vertex at the eye of the ob

server, with the sphere of the heavens, whilst the rational

horizon is the great circle in which a horizontal plane pass

ing through the eye intersects the apparent sphere. If we
denote the zenith distance of the sensible horizon by 90-f-c,
we easily see, that c is the angle at the centre of the earth

between the two radii
,

one passing through the plane of

observation, the other drawn through a point of the small

circle in which the surface of the cone is tangent to the earth.

Hence if a denotes the radius of the earth, h the elevation

of the eye above the surface of the water, we have :

a
cos c= - -

,

a 4- h

and hence: 2 sin \ c~ =
a-f- h

By means of this formula the angle c, which is called

the dip of the horizon, can be computed for any elevation

of the eye, and must then be subtracted from the observed

altitude.

31. We will now examine, what influence any errors

of the sextant have upon the observations made with it. If

we imagine the eye to be at the centre of a sphere, the plane

of the sextant will intersect this sphere in a great circle,,

which shall be represented by BAC Fig. 19,



and which at the same time represents the plane in which

the two objects are situated. Let OA be the line of vision

towards the object A. When this ray falls upon the small

reflector (which is also called the horizon-glass) it is reflected

to the large reflector
,
and if p is the pole of the small re

flector, that is, the point in which a line perpendicular to

its centre intersects the great circle, the ray after being re

flected will intersect the great circle in the point B so that

Bp= pA.

Further if P is the pole of the large reflector (which is also

called the index -glass) the ray after being reflected twice

will intersect the great circle in the point C so that

PC=PB
and in this direction the second observed object will lie. The

angle between the two objects is then measured by AC, the

angle between the two reflectors by p P, and it is again easily

seen that A C is equal to 2pP.
This is the case, if the line of collimation of the teles

cope is parallel to the plane of the sextant, and both reflec

tors are perpendicular to this plane. We will now suppose,
that the inclination of the line of collimation to the plane of

the sextant is i. If then B A C represents again the great
circle in which the plane of the sextant intersects the sphere,
the line of collimation will not intersect the sphere in the

point A but in A, the arc AA being perpendicular to B A C
and equal to i. After the reflexion from the small and the

large reflector the ray will intersect the sphere in the points

B and
C&quot;,

the arcs B B 1

and CC being likewise equal to i

and perpendicular to BAC. If the pole of the great circle

BAC is (), then the angle QAC is the angle given by the

reading of the sextant, whilst the arc AC is equal to the

angle between the two observed objects, and denoting the

first by ,
the other by ,

we have in the spherical triangle

AQC i
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cos ft = sin i~ -+- cos i~ cos ft

= cos -f- 2 t
2
sin j

a
,

and hence according to the formula (19) of the introduction:

a = {
-

tang -5-
.

Therefore when the telescope is inclined to the plane
of fhe sextant, all measured angles will be too great. The

amojint. nf the error can be easily found. For in the teles

cope of the sextant there are two parallel wires, which are

also parallel to the plane of the sextant, and the line from

the centre of the object glass to a point half way between

these wires is taken as the line of collimation. Now if

the images of two objects are made coincident near one of

these wires and the sextant is turned so that the images are

seen near the other wire, then the images must still be coin

cident, if the line of collimation is parallel to the plane of

the sextant, because each time the line of vision was in the

same inclination to the plane of the sextant. But if the two

images are not coincident in the second position of the sex

tant, it indicates, that the line of collimation is inclined to

the plane of the sextant. Now let the two readings, when
the images are made coincident near each wire, be s and s l

the inclination of the telescope i
,

the distance of the two

wires J, and the true distance of the objects 6, then we
have in one case:

s=b-\-
^

-- i\ tang I *,

and in the other case:

s = b -f- ( -f- i\ tang i s
;

therefore putting:
tang = tang | a

we have :

It is easily seen that the smaller angle corresponds to that

wire which is nearest to the plane of the sextant, and that a

line parallel to the plane of the sextant would pass through
ft

a point whose distance from this wire is equal to
-|

i.
Jj

A third wire must then be placed at this distance, and all

observations must be made near it, or, if they are made
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midways between the two original wires, the correction

i
2

tang | s must be applied to all measured angles.

It is necessary, that the plane of the horizon- glass be

parallel to that of the index -glass, when the index of the

vernier is at the zero of the scale, and that these two reflectors

be perpendicular to the plane of the sextant. It is easy to

examine whether the first condition is fulfilled, and if there is

any error, it can be easily corrected. For the horizon-glass

has two adjusting screws. One is on the back -side of the

reflector, which by means of it is turned round an axis per

pendicular to the plane of the sextant, the other screw serves

to render the plane of the reflector perpendicular to the plane

of the sextant. Now when the index of the vernier is nearly

at the zero of the scale, the telescope is directed to an ob

ject at an infinitely great distance, and the direct and re

flected images are made coincident. If this is possible, the

two reflectors are parallel and the reading of the circle is

then the index error. But if it is impossible to make the

two images coincident, and they pass by each other when

the alhidade is turned, it shows, that the planes of the two

reflectors are not parallel. If the images are then placed so

that their distance is as little as possible, then the lines of

intersection of the two reflectors with the plane of the sex

tant are parallel, and then by means of the second of the

screws mentioned before the horizon-glass can be turned until

the two images coincide and the two glasses are parallel.

The reading in this position is the index error, which must

be subtracted from all readings, in order to find the true

angles between the observed objects. In order to correct

this error, the alhidade is turned until the index is exactly

at the zero of the scale and then the images of an object

at an infinitely great distance are made coincident by turning

the horizon-glass by means of the screw on its back. Usually

however this error is not corrected, but its amount is deter

mined and subtracted from all readings. For this observation

the sun is mostly used, the reflected image being brought in

contact first with one limb of the direct image and then with

the other. If the reading the first time is a, the second

time 6, then
a

is the index-error, and ^ or^ is the
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diameter of the sun, accordingly as a is less or greater than b.

One of these readings will be on the arc of excess, and there

fore be an angle in the fourth quadrant; but the readings

on the arc of excess may also be reckoned from the zero

and must then be taken negative.

For observing the sun colored glasses are used to qualify

its light. When these are not plane glasses, the value of

the index-error found by the sun is wrong. When afterwards

altitudes of the sun are taken, this error has no influence,

as long as the same colored glasses are employed which were

used for finding the index error. But when other observa

tions are made, for instance when lunar distances are taken, the

index-error must be found by a star or by a terrestrial object.

But when a terrestrial object is observed, whose distance

is not infinitely great compared to the distance between the

two reflectors, the index -error c as found by these obser

vations must be corrected, in order to obtain the true index-

error c
(} ,

which would have been found by an object at an

infinitely great distance. For if A denotes the distance of

the object from the horizon-glass, /&quot;the
distance between the

two reflectors, ft the angle which the line of collimation of

the telescope makes with a line perpendicular to the horizon-

glass, then we find the angle c, which the direct and the

twice reflected ray make at the object, when the two images
are coincident, from the equation:

/sin 2/9^ C = ^fcosW
and hence we have:

c=/ sin 2/9 4-^ sin 4/9,

where the second member of the equation must be multiplied

by 206265, in order to find c in seconds. Now if the two

reflectors had been parallel, the ray reflected from the index-

glass would have met an object whose distance from the ob

served object is c, and the true index-error would have been

obtained, if these two objects had been made coincident.

Therefore if the reading was c17 when the object and its

reflected image were coincident, we have:

c =ci -h -^-sin2/9 ^4r sin 4/9.a a&quot;
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The angle /?, which was used already before, can be

easily determined, if the sextant is fastened to a stand, and
the index-error CT is found by means of a terrestrial object.
If we then direct a telescope furnished with a wire -cross

to the index- glass, make the wire -cross coincident with the

reflected image of the object, and then measure with the sex

tant the angle between the object and the wire-cross of the

telescope, we have :

5 c = 2/? 4 8inM
, .

A
and since :

c = c
x +^ sin 2A

we obtain :

If the inclination of the horizon -
glass to the plane of

the sextant is
,

its pole will be at p (Fig. 20), the arc pp
being equal to i and perpendicular to BAC.

Fiji. W.

// C

The ray after being reflected from the horizon-glass in

tersects the sphere in B and after its reflexion from the in

dex-glass in C . In this case again A C is the angle ob

tained by the reading, while AC is really the angle ,
which

is measured. We have then, as is easily seen:

BB = CC&quot; = 2 cos^.i,

where ft is, as before, the angle between the line of collima-

tiori of the telescope and a line perpendicular to the horizon-

glass, which is equal to A p. Moreover we have:

cos a = cos a cos C C
= cos 2 cos /9

2
i- cos a,

and according to the formula (19) of the introduction:

. 2 cos ft- i
2

a = ft -f- .

tang a

If the inclination of the index -glass to the plane of the

sextant were i, and the horizon-glass were parallel to it and

the telescope perpendicular to both, then p ,
F

,
A and like

wise B and C would lie on a small circle, whose distance
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from the great circle BAG would be equal to i. Then p P
or the angle between the two reflectors would be, as in

the former case, when the inclination of the telescope was

equal to i :

-j a = 4- a i
-

tang -j- ,

or:

a = a -2 i~ tang | a.

For correcting this error two metal pieces are used,
which when placed on the sextant, are perpendicular to its

plane. One of these pieces has a small round hole, and the

other piece is cut out and a fine silver -wire is stretched

across the opening so that it is at the same height as the

centre of the hole
,
when the two pieces are placed on the

sextant. For correcting the error the sextant is laid hori

zontal and the piece with the hole is placed in front of the

index-glass which is turned, until the image of the piece is

seen through the ^ole. Then the other piece is likewise placed
before the index-glass so, that the wire is also seen through
the hole. If then the wire passes exactly through the centre

of the reflected image of the hole, the index -glass is per

pendicular to the plane of the sextant, because then the hole,

its reflected image and the wire lie in a straight line, which

on account of the equal height of the wire and the hole is

parallel to the. plane of the sextant. If this is not the case,

the position of the index -glass must be changed by means

of the correcting screws, until the above condition is ful

filled.

The same can be accomplished in this way, though per

haps riot as accurately: If we hold the instrument horizon

tally with the index -glass towards the eye, and then look

into this glass so that we see the circular arc of the sex

tant as well direct as reflected by it, then, if the index-glass
is perpendicular, the arc will appear continuous, and if it

appears broken, the position of the glass must be altered

until this is the case.

It may also be the case, that the two surfaces of the

plane-glas reflectors, which ought to be parallel, make a small

angle with each other so that the reflectors have the form

of prisms. Let then AB (Fig. 21) be the ray striking the
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front surface of the index -glass,

which will be refracted towards C.

After its reflection from the back

surface it will be refracted at the

front surface and leave this sur

face in the direction DE. When
the two surfaces are parallel, the

angle ABF will be equal to GDE,
but this will not be the case, when

the surfaces are inclined to each other. Now if we take

MNP= d, and denote the angles of incidence ABF and GDE
by a and &, and the angles of refraction by t

and &
t ,

we

have:
j -f-rt

(JO -+- 8

b
l 4- = DO S,

and hence:
b

t
= ai 28.

Now if-- is the refractive index for the passage from
7H

atmospheric air into glass, we have also :

sin a i
= sin

,
sin b

t
= sin 6

;m m
and hence:

sin a sin 6= [sin a
l

sin a
l
cos 2 -+- cos ci l sin 2 ]

n

or:

= 2 S V -, sec a- tang a-

&quot; 9 I 1
z sec a 2

-f- 1.

n

Now a is the angle, which the line from the eye to the

second object makes with the line perpendicular to the in

dex-glass. If we denote by ft the angle, which the line of

collimation of the telescope makes with the line perpendicular

to the horizon -glass, and by y the angle between the two

objects, then we have:

and hence :

Now the correction which must be applied to the angle ;

is the difference of the above value and that for
;-
= 0, be-
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cause the index -error is also found wrong, when the two

surfaces of the glasses are not parallel. Therefore if we de

note this correction by #, we have:

and we must add this correction, if the side of the glass

towards the direct ray is the thicker one, because then the

reflected ray is less inclined to the line perpendicular to the

glass than the direct ray, and hence the angle read off is

too small. If the side towards the direct ray is the thinner

one, the correction must be subtracted.

The formula for x can be written more simply thus:

m \ /? + 7 I/,

~

~n~~7p~+~y\* ft -./
n*&quot;

x= 2
)
sec

r
[/

1
- sin - --

&amp;lt;-}

sec ~
]/

1
-

n 1 i m v . * / 2 f in,&quot; r

or since -- is nearly equal to ^ :

m J

Now in order to find #, we measure after having de

termined the index -error the distance of two well defined

objects, for instance, of two fixed stars, which must however

be over 100. Then we take the index-glass out of its set

ting, put it back in the reversed position and determine the

index-error and the same distance a second time. If then /\

be the true distance of the stars, we find the second time

A x= 6-
,

if the first observation gave :

and hence we have:
,&quot;

S=

Since rays coming from the index-glass strike the hori

zon-glass always at the same angle, it follows, that the error

arising from a prismatic form of this glass is the same for

all positions of the index -glass and hence it has no effect

upon the measured distances.

Finally the sextant may have an excentricity, the centre

on which the alhidade turns being different from that of the
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graduation. This error must be determined by measuring
known angles between two objects. If the angle is a and

the reading of the circle gives s, we have according to No. 6

of this section:

O) 206265
,

/

or:

L

1
&quot;

c & ~\

cos 4 . sin 4 .s-
--- sin 4 . cos i s 206265.

r J

Therefore if we measure two such angles, we can find

cos * and -- sin
*
0, and hence and 0, and then every

r r r

reading must be corrected by the quantity :

-I- sin 4- (* 0) 206265,
r

Since the error of excentricity is entirely eliminated wTith

an entire circle, when the readings are made by means of

two verniers which are diametrically opposite, reflecting circles

are for this reason preferable to sextants. Especially conve

nient are those invented by Pistor & Martins in Berlin, which

instead of the horizon-glass have a glass-prism. They have

the advantage, that any angles from to 180 can be mea

sured with them. All that has been said about the sextant

can be immediately applied to these instruments.

Note. Compare: Encke, Ueber den Spiegelsextanten. Berliner astron.

Jahrbuch fur 1830.

VII. INSTRUMENTS, WHICH SERVE FOR MEASURING THE RELATIVE
PLACE OF TWO HEAVENLY BODIES NEAR EACH OTHER.

(MICROMETER AND HEL1OMETER).

32. Filar micrometer. For the purpose of measuring
the differences of right ascension and declination of stars,

which are near each other, equatoreals are furnished with a

filar micrometer
,
which consists of a system of several par

allel wires and one or more normal wires. This system of

wires can be turned about the axis of the telescope so that

the parallel wires can be placed parallel to the diurnal mo
tion of the stars, and this is accomplished, when these wires
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are turned so that an equatoreal star does not leave the

wire while it is moving through the field of the telescope.

In this position the normal wire represents a declination circle.

Therefore when a known and an unknown star pass through
the field, and the times of transit over this wire are observed,

the difference of these two times is equal to the difference

of the right ascensions of the two stars. In order to mea
sure also the difference of the declinations, the micrometer

is furnished with a moveable wire, which is also parallel to

the diurnal motion of the stars, and which can be moved by
means of a screw so that it is always perpendicular to the

normal wire. The number of entire revolutions of the screw

can be read on a scale, and the parts of one revolution on

the graduated screw -head. Therefore if the equivalent in

arc of one revolution is known, and the screw is regularly

cut or its irregularities are determined by the methods given
in No. 9 of this section, we can always find, through what

arc of a great circle the wire has been moved by means of

the screw. Hence if we let a star run through the field

along one of the parallel wires and move the moveable wire,

until it bisects the other star, and then make it coincident

with the wire on which the first star was moving, then the

difference of the readings in these two positions of the mo
veable wire will be equal to the difference of the declinations

of the two stars. In case that one of the bodies has a pro

per motion, the difference of the right ascensions belongs to

the time, at which the moveable body crossed the normal

wire, and the difference of the declinations to that time, at

which the moveable body was placed on one of the parallel

wires or bisected by the moveable wire.

The coincidence of the wires is observed so, that the

moveable wire is placed very near the other wire first on

one side and then on the other; it is then equal to the arith

metical mean of the readings in the two positions of the

wire. If this observation is made not only in the middle

of the field, but also on each side near the edge, and the va

lues obtained are the same, it shows, that the moveable wire

is parallel to the others.

The equivalent of one revolution of the screw in sec-

33
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ends of arc is found in the same way that the wire-distances

of a transit instrument are determined. The micrometer is

turned so that the normal wire is parallel to the diurnal mo
tion of the stars

,
and then the times of transit of the pole-

star over the parallel wires are observed, since these now

represent declination circles. Thus the distances between the

wires are found in seconds of arc, and since they are also

found expressed in revolutions of the screw, if the coincidence

of the moveable wire with each of the parallel wires is ob

served, the equivalent of one revolution of the screw in sec

onds of arc is easily deduced. This method is especially

accurate, when a chronograph is used for these observations.

Another method is that by measuring the distance bet

ween the threads of the screw, and the focal length of the

telescope, because if the first is denoted by m, the other by
/&quot;,

we find one revolution of the screw expressed in seconds :

r =^ 206265.

We can also find by Gauss s method the distances between

the parallel wires and then the same expressed in revolu

tions of the screw. Finally we may measure any known

angle, for instance the distance between two known fixed

stars, by means of the screw; but in either case the accuracy
is limited, in the first by the accuracy with which angles
can be measured with the theodolite, and in the other by the

accuracy of the places of the stars.

Since the focal length of the telescope and likewise the

distance between the threads of the screw vary with the tem

perature, the equivalent of one revolution of the screw is not

the same for all temperatures. Hence every determination

of it is true only for that temperature, at which it was made,
and when such determinations have been made at different

temperatures, we may assume r to be of the form:

r= a b (t t ) ,

and then determine the values of a and b by means of the

method of least squares.

Usually such a micrometer is arranged so, that it serves

also for measuring the distances and the angles of position
of two objects, that is, the angle, which the great circle
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joining the two objects makes with the decimation circle. In

this case there is a graduated circle (called the position circle)

connected with it, by means of which the angles through
which the micrometer is turned about the axis of the tel

escope, can be determined. The distance is then observed

in this way, that the micrometer is turned until the normal

wire bisects both objects, and then one of the objects is

placed on the middle wire while the other is bisected by the

moveable wire. When afterwards the coincidence of the

wires is observed, the difference of the two readings of the

screw-head is equal to the distance between the two objects.

If another observation is made by placing now the second

object on the middle wire and bisecting the first object by
the moveable wire, then it is not necessary to determine

the coincidence of the wires, since one half of the difference

of the two readings is equal to the distance between the two

objects. If also the position-circle is read, first when the nor

mal wire bisects the two objects, and then, when this wire is

parallel to the diurnal motion of the stars, the difference of

these two readings is the angle of position, but reckoned

from the parallel; however these angles are always reckoned

from the north part of the declination circle towards east

from to 360, and therefore 90 must be added to the

value found.

In order to make the centre of the micrometer coincident

with the centre of the position angle, we must direct the tel

escope to a distant object and turn the position circle 180.

If the object remains in the same position with respect to

the parallel wires, this condition is fulfilled; if not, the dia

phragm nolding the parallel wires must be moved by means
of a screw opposite the micrometer screw, until the error is

corrected. When this second screw is turned, of course the

coincidence of the wires is changed, and hence we must al

ways be careful, that this screw is not touched during a

series of observations, for which the coincidence of the wires

is assumed to be constant.

In order to find from such observations of the distance

and the angle of position the difference of the right ascen

sions and the declinations of the two bodies, we must find

33*
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the relations between these quantities. But in the triangle
between the two stars and the pole of the equator the sides

are equal to A ,
90 d and 90

,
whilst the opposite

angles are a
or, 180 p and /?, where p and p are the

two angles of position and A is the distance, and hence we
have according to the Gaussian formulae:

sin A sin (p -+- p)
= sin \ (a! ) cos | ( + &amp;lt;?)

sin I A cos I (p +/&amp;gt;)
= cos \- (a! ) sin | (&amp;lt;? )

cos | A sin Y Qo /?)
= sin | ( a) sin ^ (&amp;lt;?

-h 5)

cos Y A cos | (p p] = cos ^ ( a) cos ^ (# d).

In case that a and J d are small quantities so

that we can take the arc instead of the sines and 1 instead

of the cosines, A is also a small quantity, and since we can

take then p = p ,
we obtain :

cos (S
1

-+- S) [a
1

a]
= A sin p

Ctl C\

O = A COSjtf.

For observing distances and angles of position it is re

quisite that the telescope be furnished with a clockwork, by
which it is turned so about the polar axis of the instrument,
that the heavenly body is* always kept in the field. But if the

instrument has no clockwork or at least not a perfect one,

the micrometer in connection with a chronograph can still be

advantageously used for such observations, for instance, the

measurement of double stars, without the aid of the screw. For

this purpose the moveable wire is placed at a small, but ar

bitrary distance from the middle wire, and the position circle

is clamped likewise in an arbitrary position. The transit of the

star A is then observed over the first wire and that of the

star B over the second; let the interval of time be t. Then
the star B is observed on the first wire and the star A on

the second wire, and if the interval of time is
,
and if A

denotes the distance between the two stars, p the angle of posi

tion, i the inclination of the wires to the parallel circle recko

ned from the west part of the parallel through north, which

is given by the position circle, we have:

For, a is the arc of the parallel circle of A between A
and a great circle passing through B and making the angle i
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with the parallel circle. If we consider the arcs as straight

lines, we have a triangle, in which two sides are A and
,

whilst the opposite angles are i and 90 -+- p i. When
these observations are made in two different positions of the

position circle, we can find from the two values of a the

two unknown quantities A and /?, and when the observations

have been made in more than two positions, each observa

tion leads to an equation of the form:

Acos(p t) cos (p ?) sin (jo i) 3600

sin.i sin i
p

sin f 206265

and from all these equations the values of d/\ and dp can

be found by the method of least squares.

At the observatory at Ann Arbor the following obser

vations of 6 Hydrae were made, where every a is the mean
of ten transits:

;= 9924 50 24 141 40
= 1&quot;.062 -4&quot;. 239 H-2&quot;.382.

If we take p = 207, A = 3&quot;. 5, we obtain the equations:
= 0&quot;.011

- 0.306 rfA - 0.590 dp= 4-0&quot;.070 -1.191JA - 0.315 dp= 0&quot;.044 4- 0.668 dA 0.089
d/&amp;gt; ,

where p p. From these we find d A= + 0&quot; . 056,

dp=+ 0. 208, and the residual errors are 0&quot;.040, 0&quot;.004

and + 0&quot;.024.

33. Besides this kind of filar micrometer others were

used formerly, which now however are antiquated and shall

be only briefly mentioned.

One is a micrometer, whose

wires make angles of 45 with

each other, Fig. 22. If one wire

is placed parallel to the diurnal

motion, we can find from the

time in which a star moves from

A to 5, its distance from the

centre, for we have:

t

Fig. 42.

15 cos S.

and since we have for another star:
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the difference of the decimations of the two stars can be

found. The arithmetical mean of the times t and t is the time

at &quot;which the star was on the declination circle CM; if-

is the same for the second star, the difference is equal to

the difference of the right ascensions.

Fig. 23. A second micrometer is that invented

by Bradley, whose wires form a rhombus,
the length of one diagonal being one half

of that of the other, Fig. 23. The shorter

diagonal is placed parallel to the diurnal

motion. If then a star is observed on the

wires at A and J5, MD will be equal to the

interval between the observations expressed
in arc and multiplied by cos d, so that:

And if we have for another star:

M D= 15 (T r) cos d .

we easily find the difference of the decli

nations, whilst the difference of the right ascensions is found

in the same way as with the other micrometer.

Before these micrometers can be used, it must be examined,

whether the wires make the true angles with each other.

They have this inconvenience that the wires must be illu

minated, so that they cannot be employed for observing any

very faint objects. For this reason ring -micrometers are

preferable, since they do not require any illumination, and

besides can be executed with the greatest accuracy.

34. The ring -micrometer consists in a metallic ring,

turned with the greatest accuracy, which is fastened on a

plane glass at the focus of the telescope, and hence is distinctly

seen in the field of the telescope. If the emersions as well

as the immersions of stars are observed, the arithmetical mean

of the two times is the time at which the star was on the

declination circle passing through the centre of the field.

Therefore the difference of the right ascensions is found in

the same way as with the other micrometers. And since

the length of the chords can be obtained from the interval

of the times of emersion and immersion, the difference of
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the declinations can be found, if the radius of the ring is

known.

Let t and t be the times of emersion and of immersion

of a star, whose declination is J, and let r and T be the

same for another star, whose declination is J
,
then we have:

= ! (T -f- r) | (t H- 0-

If then u and p denote half the chords which the stars

describe, we have:

fl
=

-j-
(t t) COS $

and

(A
= (T T) cos # .

Putting :

Psm a?=
r

, /*
sin 9?

=
&amp;gt;

where r denotes the radius of the ring, we obtain, if we de

note by D the declination of the centre of the ring:

S D = r cos
y&amp;gt;

D= r cos 97 ,

and hence:
8 $= r [cos 95

=t= cos
95],

accordingly as the stars move through the field on different

sides or on the same side of the centre.

In 1848 April 11 Flora was observed at the observatory

at Bilk with a ring-micrometer, whose radius was 18 46&quot;. 25.

The declination of Flora was

T= 24 5 . 4

and the place of the comparison star was:

= 91 12 59&quot;. 01

&amp;lt;?=2.4 1 9 .01.

The observations were:

T = llhi6m35s.o Sider. time t = ll h 17 53* .

T = 17 25 .5 * = 19 46 .5

We have therefore:

log r r 1 . 70329 log t t 2 . 05500

log^ 2.53878 log p 2.89070

cosy 9.97850 cosy 9.85941
&amp;gt;

]) 17 51&quot;. 9 S D 13 34&quot;. 8,
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and since the two bodies passed through the field on the

same side of the centre, namely both north of
it, we have:

&amp;lt;? -&amp;lt;?=:+ 4 17&quot;. 1.

The time at which the bodies were on the declination

circle of the centre were:

I (r -f- T) = Ufa 1? Qs . 25 | (* -+- = Ufa 18m 49 . 75.

Therefore at

Hh 17m Qs. 25

the difference of the right ascensions and declinations were:

.
= 1^49*. 50 &amp;lt;? &amp;lt;?

= 4-4 17&quot;. 1

= 27 22&quot;. 50.

If the exterior edge of such a ring is turned as accu

rately circular as the other, we can observe the immersions

and emersions on both edges. However it is not necessary
in this case to reduce the observations made on each edge
with the radius pertaining to it, but the following shorter

method can be used.

Let
/LI

and r be the chord and the radius of the inte

rior ring, and p and r the same for the exterior ring, then

we have:

cos S (t
= p = r sin y

&amp;lt;x&amp;gt;sS (t\ t
l }=sfi

t=r
smy&amp;gt; ,

hence :

fi -f- fi
= (a -f- 6) sin tp-\- (a ft) sin

y&amp;gt;

and:

ju ft
= (a -+- ft) sin

92 (a ft) sin
9? ,

putting :

r+ r
1 -r-r

^
= a and

^
= 6.

From this we find:

ft -I- p .
&amp;lt;p

-+- QP y OP OP -+ OP
.

OP 9?^ = a sin ^-^ cos
r -r-

-|- ft cos ^-^-
sin Z_*.

^M w OP -f- Op
.

OP
95 .

05 -(- OP* OP OP

2
= a cos ^ ~- sin + 6 sm

2~
C S

2

Adding and subtracting the two equations:
S D = r cos 9?

5 Z)= r cos
y&amp;gt;

we further obtain:

* ( 6) cos 99 (a -f- ?;) cos (f
= 0,
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sm
2 2

cos -
2
- cos

and

d D= a cos
T T

- cos L
-^-~

6 sin
2

Sin
2

therefore if we substitute the value of b in the expressions for;

P-\~P p ft ... Tl
~ &amp;gt;

and o D

we find:

sin ^

.

sm -

and

/^H-y
C H 2D = a .

:

(D-\-(p W-
COS fT COS

~~^~

cos
y&amp;gt;

cos cp

Therefore if we put:

we obtain:

OP- O?
-

^ y-

sin ^4 and ^
_ = sin ^, (A)
2a

V cos
cos -4 = -JJ-

and

hence :

Hence for the computation of the distance of the chord

from the centre of the ring only the simple formulae (A)
and (#) are required.
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In 1850 June 24 a comet discovered by Petersen was
observed with a ring-micrometer at the observatory at Bilk

and compared with a star, whose apparent place was:
rt= 223 22 41&quot;. 30 5= 59 T 12&quot;. 19,

whilst the declination of the comet was assumed to be 59&quot; 20 .0.

The radius of the exterior ring was 11 21&quot;. 09, that of the

interior ring 9 26&quot;. 29, hence we have:

a =10 23&quot;. 69.

Tbe observations were as follows:

C. north of the centre Star south

Immersion*) Emersion Immersion Emersion
18 h 15m 54s20s 1? 21s 48* 18m 55.3 13s. 21 20.5 37 . 5.

With this we obtain:

i
1

t Exterior ring lm 54 s
t t E.R. 2m 42s . 2

Interior ring 11 27.5
log of the sum 2 . 24304 2 . 46195

log of the diff. 1 . 72428 1 . 54033

cos ^4 9.92623 4 9:65138
cosJ3 9. 99418 9. 99749

9 . 92041 9 . 64887

8 D=+ & 39&quot;.26 S D = 4 37&quot;. 88,
hence :

a
1 *=-hl3 17&quot;. 14,

and the difference of right ascension is found:

a a= 3 25s . 82 = 51 27&quot;. 30.

35. In order to see, how the observations are to be

arranged in the most advantageous manner, we differentiate

the formulae:

r sin
(p
=

ft ,
r sin (p

=
ft ,

r cos
&amp;lt;f&amp;gt;

=p r cos cp
= S 8.

Then we obtain:

sin (pdr -\- r cos
&amp;lt;p dtp

= dp
sin cp dr -\- r cos

&amp;lt;f&amp;gt; dy&amp;gt;

= dfi

[cos
&amp;lt;p
=p cos

&amp;lt;p\

dr r sin tpdtp ==r sin tpdcp
= d (S

1

8}

or eliminating in the last equation dcf and
d&amp;lt;p by means of

the two first equations:

[cos (p =f= cos rp] di sin
(f

1

cos
&amp;lt;pd[*

== sin
(p cos cp d/u

= cos
&amp;lt;p

cos cp
d (S 8) ;

*) For the immersion the first second belongs to the exterior, the second

to the interior ring. The reverse in the case for the emersion.
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dp and d(.i are the errors of half the observed intervals of

time. Now the observations made at different points of the

micrometer are not equally accurate, since near the centre

the immersion and emersion of the stars is more sudden than

near the edge. But the observations can always be arranged

so that they are made at similar places with respect to the

centre, and hence we may put d/u = dp! so that we obtain

the equation :

[cos y&amp;gt;
=f= cos tp ] dr sin

[y&amp;gt;
=p

&amp;lt;f&amp;gt;]
dp= cos

&amp;lt;p

cos
&amp;lt;p
d(8 $).

Therefore in order to find the difference of the decli

nations of two stars, we must arrange the observations so

that cos
(f

cos &amp;lt;/ is as nearly as possible equal to 1
;
hence

we must let the stars pass through the field as far as pos

sible from the centre. If the stars are on the same parallel,

in which case the upper sign must be taken and we have

cp
=

(f, ^
then an error of r has no influence whatever upon

the determination of the declination. For finding the diffe

rence of right ascension as accurately as possible, it is evi

dent, that the stars must pass as nearly as possible through
the centre, since there the immersions and emersions can be

observed best.

36. Frequently the body, whose place is to be deter

mined by means of the ring -micrometer, changes its decli

nation so rapidly that we cannot assume any more, that it

moves through 15&quot; in one sidereal second, and that an arc

perpendicular to the direction of its motion is an arc of a

declination circle. In this case we must apply a correction

to the place found simply by the method given before. If

we denote by d the distance of the chord from the centre,

we have:

J2=r2_ (15 ; cog,?)
2

,

where = |( t&quot;)
is equal to half the interval of time

between the immersion and emersion. Now if we denote by A
the increase of the right ascension in one second of time, then

the correction A which we must apply to t on account of it

so that t-\-&t is half the interval of time which would have

been observed, if A had been equal to zero, is:

A&amp;lt;
= t.^a.
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But we have:

15 2
t cos S

hence: M= 15 .

** cos * Aa
c?

or since we have 15 cos d =
/LI:

Further the tangent of the angle rc, which the chord

described by the body makes with the parallel, is:

=
(15

where A^ is the increase of the declination in one second

of time.

Therefore if we denote by x that portion of the chord

between the declination circle of the centre of the ring and

the arc drawn from the centre perpendicularly to the chord,
we have:

x d tang n = --^--
r
--s ,

(la A) cos d

and since we must add to the time - the correction

X
s or:

cos o

15 cos - A cos ^ 2

we have, neglecting the product of
A&amp;lt;?

and

In the example given above the change of the right as

cension in 24h was 1 15
,
and that of the declination was

1 17
,
hence we have:

log A = 8.71551 n

and

log AJ= 8.72694 j*;

further we have:

log d= 2.71538 , log ft
= 2.52468,

and with this we find:

Z&amp;gt;)

=
0&quot;. 75 and A

TT
)
= ~ 7 &quot;- 10.

The change of the right ascension is also taken into

account, if we multiply the chord by
~

-, where A
ouuU
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is the hourly change of the right ascension in time, and then

compute with this corrected chord the distance from the

centre. But we have:

3600 A = _M.tia
g

3GOO &quot;3600&quot;

where M is the modulus of the common logarithms, that is,

0.4343. Now since this number is nearly equal 48 times

15 multiplied by 60 and divided by 100000, we have ap

proximately :

___
3600

~~
eoTlOOOOO

therefore we must subtract from the constant logarithm of

as many units of the fifth decimal as the number of

minutes of arc, by which the right ascension changes in 48

hours.

In the above example the change of the right ascension

in 48 hours is equal to 2&quot; 30 = 150
,
and since the con-

1
^ W

stant logarithm of -=-
c s

was 7.48667, we must now take

instead of it 7.48817, and we obtain:

2 . 24304

1 . 72428

cos^l 9.92563

cosJS 9 .99415

s&amp;gt; z)==8W75a

37. Thus far we have supposed, that the path which

the body describes while it is passing through the field of

the ring, can be considered to be a straight line. But when

the stars are near the pole, this supposition is not allowable,

and hence we must apply a correction to the difference of

declination computed according to the formulae given before.

But the right ascension needs no correction, since also in

this case the arithmetical mean of the times of immersion

and emersion gives the time at which the body was on the

declination circle of the centre.

In the spherical triangle between the pole of the equator,

the centre of the ring and the point where the body enters

or quits the ring, we have, denoting half the interval of time

between the immersion and emersion by r:
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cos r= sin D sin S -+- cos D cos S cos 15 T,

(15

\
2

T I ,

hence :

(S Z&amp;gt;)

2 =r 2
cos&amp;lt;?

2
(15r)

2
[cos/) cos S] cos 5(15 r)

2

= r 2 cos $ 2
(lor)

2
(S Z&amp;gt;)

sin S cos ^(15r)
2

.

If we take the square root of both members and neglect the

higher powers of d D, we have :

S- D= [r
&amp;gt; _ cos 8 *

(15 T
)&amp;gt;]4

- (JZLg)

2[r
2

The first term is the difference of declination, which is

found, when the body is supposed to move in a straight

line, the second term is jthe correction sought. We have

therefore :

S D= d \ sin S cos 8 (15 r)
2

,

where the second term must be divided by 206265, if we
wish to find the correction expressed in seconds. For the

second star we have likewise:

S D= d \ sin S cos S (15 r )
2

,

and hence:

8 S= d d-+- [tang 8 cos 2
(lor)

2
tang S cos &amp;lt;?

2
(lor )

2

],

instead of which we can write without any appreciable error:

3 S= d JH-|tang|(&amp;lt;?4-&amp;lt;? )[cos&amp;lt;?

2
(15r)

2 cos S 2
(15-r )

2
],

or since:

cos&amp;lt;?
2 15 a T 2 =r 2 d-

and
cosd 2 15 2 T 2 =r 2

rf
2

,

also
S S^d d+ t

tang | (8 -t- 5) (d -f- d) (d d) .

Hence the correction which is to be applied to the dif

ference of declination computed according to. the formulae

of No. 34, is:

In 1850 May 30 Petersen s comet, whose declination was

74 9 was compared with a star, whose declination was

73 52 . 5. The computation of the formulae of No. 34 gave:
(/= 8 56&quot;. 7, rf = H-7 36&quot;.9.

With this we find:
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log (&amp;lt;?-t-d)
= 1.90200,,

log (d d) = 2 . 99721

Compl log 206265 = 4 . 68557

Compl log 2= 9 . 69897

tang 1 (&amp;lt;T -+- 8)= 0^54286
&quot;9 . 82661&quot;

Correct. = 0&quot;. 67.

Hence the corrected difference of declination was:

-h 16 32&quot;. 93.

38. For determining the value of the radius of the

ring, various methods can be used.

If we observe two stars, whose declination is known,
we have:

ft -f-
f.i
= r [sin y -+- sin cp ]

= 2 r sin -j (&amp;lt;p
-+- y ) cos \(cp 90 )

jit, //
= r [sin y sin

y&amp;gt; ]
= 2r cos -

(y&amp;gt;

-h 95 ) sin
(99 y )-

Further we have:

S 3 8

cos
&amp;lt;f

-(- cos cp
2 cos -j (90 -f- 9s ) cos T (9

P y )

and hence:

--*= tang i ((f&amp;gt;

-h gp ) JF^fl
== tang T fa

~~

Therefore if we put:
; ;

-

tang -4 and ^; ^
~~~

tang B.

we obtain:

2 cos A cos B

2 sin

2 cos J. sin B

sin (4 -f- 5)

^
;

sin (J. E)

The differential equation given in No. 35 shows, that

the two stars must pass through the field on opposite sides

of the centre and as near as possible to the edge, because

then the coefficient of dr is a maximum, being nearly equal

to 2, and the coefficient of du is very small. We must

select therefore such stars, whose difference of declination is

little less than the diameter of the ring.
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The radius of the interior ring of the micrometer at the

Bilk observatory was determined by means of the stars Aste-

rope and Merope of the Pleiades, whose declinations are :

= 24 4 24&quot;. 26

and
&amp;lt;? =23 28 6&quot;. 85

and half the observed intervals of time were *) :

18s. 5 and 5G*.2.

With this we find:

log (ft fi )
= 2. 41490

cos A= 9. 98825

cos B = 9 . 99693

9.98518

r=18 46&quot;.5.

The radius of the ring can also be determined by ob

serving two stars near the pole, but in this case we cannot

use the above formulae
,

since the chords of the stars are

not straight lines. But in the triangle between the pole, the

centre of the ring and the point, where the immersion or

emersion takes place, we have, if we denote half the inter

val of time between the two moments converted into arc,

for one star by T and for the other by T :

cos r= sin sin D -f- cos S cos D cos i

cos r= sin sin D -+- cos cos D cos T .

If we write:

+ -&amp;gt;
.

-
---

1

----- instead of o and
^
-----~ - instead of u

and then subtract the two equations, we obtain:

S r r r-hr
tang D= cotang sin sm

T T T -h T
tang cos - cos g

Therefore if we put:

*) The stars of the Pleiades are especially convenient for these obser

vations since it is always easy to find among them suitable stars for any ring.

Their places have been determined by Bessel with great accuracy and have

been published in the Astronomische Nachrichten No. 430 and in Bessel s

Astronomische Untersuchungen, Bd. I.
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cotang
---- sin --- = a cos A

r-r .

tang ^
cos = a sin A,

we find D from the equation:

. fr+r- - ft C1Y1 Itang D = a sin -.
---

-+- A (B)

When thus D has been found, we can compute r by
means of one of the following equations:

sin ^ r
2 =sin | (8 Z))

2 4- cos S cos D sin ^ r 2
,

or

sin i- r 2 = sin | ( Z))
2
-+- cos 5 cos Z) sin A r 2

.

If we put here:

sin i T

(C)
sm \ r

we obtain :

sin i- r 2 = sin i (8 D}
2
sec y= sin-H# Z))

2
sec/,

and

- . (Z))
cos/

The solution of the problem is therefore contained in

the formulae (4), (B), (C) and
(Z&amp;gt;).

When the radius of the ring is determined by one of

these methods, the declinations of the stars must be the ap

parent declinations affected with refraction. But according
to No. 16 of this section the apparent declinations are, if the

stars are not very near the horizon:

and
8 +57&quot; cotang (#+# ),

where

tang JZV= cotg gp cos ,

and where t is the arithmetical mean of the hour angles of

the two stars.

Hence the difference of the apparent declinations of the

two stars is:

*, s 57&quot;sin(? 8)_

34
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instead of which we may write:

57&quot; sin (5 e?)

The difference of declination thus corrected must be

employed for computing the value of the radius of the ring.
These methods of determining the radius of the ring arep o

entirely dependent on the declinations of the stars. There
fore stars of the brighter class, whose places are very accu

rately known, ought to be chosen for these observations;
but it is desirable, to use also faint stars for determining
the radius of the ring, because the objects observed with

a ring micrometer are mostly faint, and it may be possible
that there is a constant difference between the observations

of bright and faint objects; therefore Peters of Clinton has

proposed another method, by which the radius is found by
observing a star passing nearly through the centre of the

field, and another, which describes only a very small chord

and whose difference of declination, need not be very accu

rately known.

We find namely from the equation // = r sin y :

r =
t

u -f- 2 r sin (45 : 4-
9&quot;)

-
.

Now if the star passes very nearly through the centre

of the ring, the second term, that is, the correction which
must be applied to a is very small. For finding its amount
the observation of the other star is used. We have namely
according to the equations which where found in No. 38:

V&amp;gt; &quot;f- M

&amp;lt;p

A-}- 13.

Hence we have:

r=
(JL -h 2r sin [45 { (A -f- 75)]-,

or because the last term is very small:

r = ^ [1 4- 2 sin (45 4 (4-h B))]
5

=
f*[2 sin (A + 13)}.

Since suitable stars for this method can be found any

where, it is best, to select stars near the meridian and high
above the horizon so that the refraction has no influence

upon the result. In case that a chronograph is used for the

observations, this method is especially recommendable,
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We can use also the method proposed by Gauss for

determining the radius of the ring by directing the telescope

of a theodolite to the telescope furnished with the ring mi

crometer and finding the diameter of the ring by immediate

measurement.

When solar spots have been observed with the ring

micrometer, it is best to determine the radius of the ring

also by observations of the sun, because the immersions and

emersions of the limb of the sun are usually observed a little

differently from those of stars. For this purpose the exterior

and interior contacts of the limb of the sun with the ring

are employed. Now when the first limb of the sun is in

contact with the ring, the distance of the sun s centre from

that of the ring is R -f- r, if R denotes the semi-diameter of

the sun and r that of the ring. If we assume the centre of

the sun to describe a straight line while passing through the

field, we have a right angled triangle, whose hypothenuse
is 72 -|-r, whilst one side is equal to the difference of the

declination of the sun s centre and that of the ring, and

the other equal to half the interval of time between the ex

terior contacts, expressed in arc and multiplied by the co

sine of the declination. Therefore, denoting half this inter

val of time by f, we have the equation:

(R -+- r)
2 = (S DY H- (15 t cos (?)-.

For interior contacts we find a similar equation in which

/
,

i. e. half the interval of time between the interior contacts

occurs instead of
,
and R r instead of R-t-r:

(R _ ry* = ( z&amp;gt;)

2
-+- (15 1 cos

&amp;lt;?)

2
.

In these two equations the times t and t must be ex

pressed in apparent solar time in order to account for the

proper motion of the sun. If we eliminate now (S D)
2

,
we

obtain :

(R H- r)
2

(R rY = (15 cos
&amp;lt;?)

2
[t

2
t *},

and

_ (15 cos S)*[t-ht ][t t
!

]

4R

The sun was observed with one of the ring micrometers

at the Bilk observatory, w]jen its declination was -+- 23 14 50&quot;

and its semi-diameter 15 45&quot;. 07, as follows:

34*
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Exterior contact: Interior contact:

Immersion 10 h 31 m 8 . 2 Sidereal time 10h 32 IU 30 s
. 8

Emersion 34m 47* .5 33 25 . 3.

From this we find half the intervals of time expressed
in sidereal time equal to I

1 &quot; 49 s
. 65 and Om 27 8

.25, and these

must be multiplied by 0.99712, in order to be expressed in

apparent time, since the motion of the sun in 24 hours was

equal to 4m 8 s .7. We have therefore:

,= 109*. 33 and t = 27* . 17,

and we find:

r= y 23&quot;.52.

Note. It is evident, that the radius of the ring has the same value only

as long as its distance from the object glass is not changed. Therefore,

when the radius has been determined by one of the above methods, we must

mark the position in which the tube containing the eye -piece was at the

time of the observation so that we can always place the ring micrometer at

the same distance from the object glass.

On the ring micrometer compare the papers by Bessel in Zach s Monat-

liche Correspondenz Bd. 24 and 26.

39. The Heliometer is a micrometer essentially different

from those which have been treated so far. It consists of

a telescope whose object glass is cut in two halves, each of

which can be moved by means of a micrometer screw par
allel to the dividing plane or plane of section and perpen

dicularly to the optical axis. The entire number of revolu

tions which the screws make in moving the two semi-lenses

can be read on the scales attached to the slides which hold

the lenses, and the parts of one revolution are obtained by
the readings of the graduated heads of the screws. There

fore if the equivalent of one revolution of the screw in sec

onds of arc is known, we can find the distance through
which the centres of the semi-lenses are moved with respect

to each other. When the semi-lenses are placed so that they
form one entire lens, that is, when their centres coincide,

we shall see in the telescope the image of any object, to

which it is directed, in the direction from the focus of the

lens to its centre. If then we move one of the semi -lenses

through a certain number of revolutions of the screw
,

the

image, made by that semi-lens wjiich is not moved, will

remain in the same position, but near it we shall see another
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image made by the other semi-lens in the direction from its

focus to its centre. Therefore if there is another object

in the direction from the centre of this semi-lens to the focus

of the fixed lens, then the image of the first object made

by this lens and that of the second object made by the semi-

lens which was moved, will coincide, and the angular distance

between these two objects can be obtained from the num
ber of revolutions of the screw, through which one of the

semi-lenses was moved.

In order that the plane of section may always pass

through the two observed objects, the frame-work support

ing the two slides with the semi-lenses is arranged so, that

it can be turned around the optical axis of the telescope.

Therefore if the heliometer has a position circle whose read

ings indicate the position of the plane of section, then we
can measure with such an instrument angles of position. But

for this purpose it is requisite, that the telescope have a

parallactic mounting.
The eye -piece is also fastened on a slide, whose pos

ition is indicated by a scale, and this can likewise be turned

about the axis, and its position be obtained by the readings

of a small position circle whose division increases in the same

direction as that of the position circle of the object glass.

This arrangement serves to bring the focus of the eye-piece

always over the images of the object made by the semi-lenses.

For if one of them is moved so that its centre does not co

incide with that of the other, its focus moves also from the

axis of the telescope, and hence the focus of the eye -piece
does not coincide with the image of an object made by this

semi-lens. Therefore in order to see it distinctly, we must

move the eye-piece just as far from the axis of the telescope

and in the right direction, so that its focus and the image
of the object coincide.

Now the plane of section will not pass exactly through
the centre of the position circle. We will call the reading

of the moveable slide *) ,
when the distance of the optical

*) We will assume here, that only one of the slides is moved and that

the other always remains in a fixed position.
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centre of the lens from the centre of the circle is a mini

mum, the zero-point. It can easily be determined, if we find

that position, in which the image of an object seen in the

telescope does not change its place in the direction of the

plane of section, when the object glass is turned 180. When
this position has been found, the index of the scale of the

slide can be moved so that it is exactly at the middle of

the scale. In the same way we can find the zero -point of

the eye-piece, and we will assume, that for this position the

readings of the three scales, namely those on the slides

of the two semi -lenses and that on the slide of the eye

piece, are the same and equal to h. Then the wire -cross

of the telescope must likewise be placed so that its distance

from the axis of revolution is a minimum, and this is accom

plished by directing the telescope to a very distant object
and turning both position circles 180. If the image remains

in the same position with respect to the point of intersection

of the wires, then this condition is fulfilled, but if it chan

ges its place, the wire-cross must be corrected by means of

its adjusting screws.

We will assume, that when the image of an object made

by one of the semi- lenses is on the wire -cross, the reading
of the scale is s and that of the position circle, corrected for

the index -error, /?; at the same time let the reading of the

scale of the eye-piece be rr, and that of its position circle n.

Let a be the distance of the zero -point from the centre of

the position circle, and t and S the corrected readings of the

hour-circle and the declination-circle of the instrument ;
these

belong to that point of the heavens, towards which the axis

of the telescope is directed. We will imagine then a rect

angular system of axes, the axis of and
?/ being in the

plane of the wire -cross so that the positive axis of is di

rected to 0, and the positive axis of
;/
directed to 90 of the

position circle, that is, to the east when the telescope is

turned to the zenith. Finally let the positive axis of be

perpendicular to the plane of the wire -cross and directed

towards the object glass. If wo put then:

s h = e and cr h E
,

and denote by / the focal length of the object glass expressed
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in units of the scale, and take a positive, if the zero -point

is on the side where i] is positive, and if the angle of posi

tion is either in the first or the fourth quadrant, then the

co-ordinates of the point s are:

e cos p a sin p ,
e sin p cos p ,

/

and those of the point 6 :

e cos n a sin n
,

a sin TC a cos it
,
0.

Hence the relative co-ordinates of s with respect to 6

will be:
= e cos p e cos 7f a [sin p sin n]

r, = e sin p sin 71 -+- a [cos p cos n] (a)

and if celestial objects are observed, whose distance from

the focus of the telescope is infinitely great compared to
,

we can assume, that these expressions are also those of the

co-ordinates of the point s with respect to the focus.

The co-ordinates must now be changed into such which

are referred to the plane of the equator and the meridian,

the positive axis of a? being in the plane of the meridian and

directed to the zero of the hour -angles, whilst the positive

axis of y is directed to 90, and the positive axis of z is par

allel to the axis of the heavens and directed to the north pole.

For this purpose we first imagine the axis of g to be

turned in the plane of | towards the axis of through the

angle 90
&amp;lt;);

then the new co-ordinates will be in the plane

of the equator, and we shall have :

= | sin 8 -+- cos 8

= sin S I cos S.

Then we turn the new axis of g in the plane of g ?/

forwards through the angle 270 -M, in order that it may
become the positive axis of #, and we obtain:

x= cos t + ?/ sin t

y = sin t 77 cos t

If we eliminate now g , ?/, we find:

x == cos S cos t H- | sin S cos t -t- rj
sin t

y= cos S sin t -+- 1 sin S sin t rj cos t

z = sin S | cos 8,

or substituting the values of g, &amp;gt;/,

taken from the equa

tions (a) : *
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x= I cos 8 cos t -(- [e cos p s cos n] sin &amp;lt;? cos * -+- [e sin
;&amp;gt;

e sin TT] sin *

a [sinp sin TT] sin $ cos Z -|- a[cos/&amp;gt;
cos n\ sin

y= / cos $ sin t -f- [e cos p s cos TT] sin 8 sin [e sin
/&amp;gt;

e sin n\ cos

a
[sin/&amp;gt;

sin TT] sin sin 2 a [cos/? cos TT] cos t

z= lsmd [ecosp ecos7r]cos$ H-a[sinp sin ?r] cos &amp;lt;?.

From this we find the square of the distance r of the

point s from the origin of the co-ordinates:

r
2 = l~ -h [e cos p e cos n]

-
-f- [e sin p e sin TT]

2
-+- 4 a 2

sin 7(7? TT)
2

.

The line drawn from the origin of the co-ordinates to

the point s makes then the following angles with the three

axes of co-ordinates:

cos a=
,

cos ft
= and cos y

=
r r r

But if we denote by S and t the declination and the

hour angle of the observed star, that is, of the point, in

which the line joining the wire -cross of the telescope and

the point s intersects the celestial sphere, we have also:

cos a= cos S cos t
,

cos /?
= cos S sin t\ cos y= sin

,

therefore if we put:

=
Z&amp;gt;,

= A and =
d,

and also for the sake of brevity:

1 -+- [D cos
/&amp;gt;

A cos n]
2 -h [D sin /? A sin TT]

2 -h 4 rf
2
sin (/ TT)

2 = ^4

we obtain:

. cos 8 cos t -f- [Z) cos A cos TT] sin 8 cos &amp;lt;

cos ff cos F=
VA

[D sin p A sin 7t] sin &amp;lt;

^/T~
d [sin p sin TT] sin $ cos Z d [cos /&amp;gt;

cos n] sin

,,. . cos 8 sin t-\-\D cos A cos TT] sin ^ sin
S sin = -

[Z) sin p A sin n] cos t
-

VA
d[sinp sin 71] sin ^sin t-\- d[cosp cos 7t] cos t

VA
sinS [D cosp Acos7r]cosJ

VT
d [sin p sin TT] cos 8
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Now we observe always two objects with the heliometer,

and since thus there will be also the image of another star

made by the second semi -lens on the wire -cross, we shall

have three similar equations, in which

, t, A, TT, d and p

remain the same, while instead of
Z&amp;gt;,

d and t other quantities

referring to this star occur, which shall be denoted by D\ &amp;lt;&amp;gt;&quot;

and t&quot;. We have thus six equations, which however really

correspond only to four, if we find the angles by tangents;

arid all quantities occurring in the second members of these

equations will be obtained by the readings of the instrument,

namely # and t by the readings of the declination-circle and

the hour-circle, D and A by the readings of the slides of

the object glass and the eye-piece, and p and n by the read

ings of the two position circles. Hence we can find by means

of these equations cT, ,
r&amp;gt;&quot; and t&quot;. It is true, the instru

ment does not give the quantities r), , & and n with the same

accuracy as the other quantities; but since the observed stars

are near each other so that the errors of those quantities

have the same influence upon the places of the two stars,

we shall find the differences S&quot;
- fi and t&quot;

- t perfectly

accurate.

In case that the observed stars are near the pole, we

must find
t)&quot;,

d
,

t&quot; and t by means of the rigorous formulae

(6), but in most cases we can use formulae, which give im

mediately d&quot; d and
&quot;

, although they are only approxima

tely true. First we may take d equal to zero. If then we de

velop the divisor in the equation for sine) in a series, and

retain only the first terms, we find:

sin S sin S = [D cos p A cos n] cos 8 -+- $ [D cos p A cos ?r]
2 sin S

H- -j [D sin p A sin n]
2 sin $,

or according to the formula (20) of the introduction, retain

ing only the squares of the quantities put in parenthesis :

S S= [D cos p A cos n] -y [D sin p A sin n]- tang S.

For the other star we find in the same way:
S&quot; S= [D cosp ACOSTT] 4- [D

1

sin p AsinTrJ- tang S,

and hence we obtain:

8&quot; =[D Z&amp;gt; ] cos /&amp;gt;-+- tang [( 4- /&amp;gt; )sin/j 2Asin7r][Z&amp;gt; Z&amp;gt;

jsin/&amp;gt;, (c)

an equation, by means of which the difference of the decli-
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nations of the two stars is found from the readings of the

instrument.

In order to find also the difference of the riorht ascen-O
sions we multiply the first of the equations (6) by sin

,
the

second by cos t and add them. Then we get:

cos 8 sin (t
- =

. 4- [D cos p A cos n]
2 4- [D sin p

and in a similar way:
*n , ;/N

D sin p AsinTr
cos o sin (t t )

= .

I/I 4- f //cos/) AcosTr]
2

-+-[&amp;gt; sinp AsinTr]
2

&quot;

If we neglect the squares of D, D and /\, and introduce

the right ascensions instead of the hour angles, these equa
tions are changed into:

cos (a a) = D sin p A sin TT

cos 8&quot;
(a&quot; )

= D sin p A sin ?r,

and if we write here instead of 6 and d&quot; :

and write $ &amp;lt;)&quot; instead of sin (5 ()&quot;),
and 1 instead of

cos ($ #&quot;),
we obtain :

( a) cos | (S
1

-+-
&quot;)

= [D sin p A sin 71] [I -h f tang 5
(tf&quot;

# )]

(&quot; ) cos -.V (5 4- 5&quot;)
= [D

1

sin /; A sin TT
j [ 14- | tang 8

(S&quot;
5 )],

and hence:

(a&quot;
a ) cos | ((? 4- 5&quot;)

=
(/&amp;gt; /&amp;gt;)

sin p 4- i tang ^
[5&quot; &amp;lt;T) [/&amp;gt;

4- D] sin
;&amp;gt;

tang ^A sin ?r
[^&quot;

$
],

and if we substitute instead of d&quot; d the value found before

(D D ^cosp

we find:

(&quot; ) cos | (&amp;lt;? 4-&amp;lt;T)
= (D D) sin/j

-|tang^[(/) 4-Z&amp;gt;)sin;?~2Asin7r][Z) Z&amp;gt;] cos/7, (rf)

If now we put:
M= tang 5 [(/) 4-

Z&amp;gt;)
sin 7?

2A sin TT], (^4)

we can write in the equations (c) and (d) sin ?/ instead of

the small quantity ?/,
and add in the first terms of the equa

tions the factor cos u. Then we obtain :

y&amp;gt; _S = -(D -
Z)) cos (p 4- n)

a&quot; = 4- (7V 7)) sin
(/&amp;gt;

4- t/.) sec .V (^ 4- 5&quot;).

We have assumed thus far, that simply the distance

between the two stars has been measured, and that s is the

reading of the slide in that position, in which the images
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made by the two semi -lenses coincide. But when we have

two objects a and b near each other, and we move one of

the semi -lenses, we see in the telescope two new images a

and &
,
and we can make the images a and b coincident.

Then if we turn the screw back beyond the point, at which

the centres of the semi -lenses coincide, we can make also

the images b and a coincident, and the difference of the

readings of the slide in those two positions will be double

the distance.

When the observations have been made in this way, we

must put \ (I) D) instead of D D in the above formulae.

Instead of the angle p -+- u, we obtain from the two obser

vations now p -f- u and p -+- ?/&quot;,
and hence we shall have :

*-t-.y 2A, = a h

and
u =

.j- tang [(s -f- s 2 /*) sin p 2 (a /?) sin n\

S&quot;8 = (// If) cos (p -f M)

a&quot; o= -h | (// Z&amp;gt;)
sin (/? -h M) sec *-

( -+- 5&quot;).

If we wish to find t)&quot; &amp;lt;V and
&quot;

expressed in sec-
iy _ jj

onds and u expressed in minutes, we must multiply
-- -

by the equivalent of one unit of the scale in seconds of arc

and the expression for u by -QTTJ-
Now we can always

arrange the observations so, that we can neglect the term

dependent on p ;r, because we have

u = 0, when a= and n = p.

Therefore we must place the eye -piece always, at least

approximately in the position, in which these conditions are

fulfilled, and this is the more necessary, since the images in

this position are seen the most distinctly.

We have assumed thus for, that the coincidence of the

images is observed exactly on the wire -cross. But unless

the stars are very near the pole, it is sufficient, to observe

the coincidence near the middle of the field.

40. If one of the bodies has a proper motion in right

ascension and declination, this must be taken into account

in reducing the observations. If we compute from each ob-
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served distance and the angle of position the differences of

the right ascensions and declinations of the two bodies, then

their arithmetical means will belong to the mean of the times

of observation, since it will be allowable to consider the mo
tion in right ascension and declination to be proportional to

the time. However it is more convenient to calculate the dif

ference of the right ascensions and declinations only once from

the arithmetical mean of all the observed distances and angles
of position. But since these do not change proportionally to

the time, their arithmetical mean will not correspond to the

arithmetical mean of the times of observation, and hence a

correction must be applied similar to that used in No. 5 of

the fifth section for reducing a number of observed zenith

distances to the mean of the times of observation.

Let f, t\ t&quot; etc. be the times of observation, and T their

arithmetical mean, and put:

tTr, t T=r
, t&quot;T=r&quot;,etc.

Further let p, /? , p&quot;
etc. be the angles of position corres

ponding to those times, P that corresponding to the time T,

and A and /\() the change of the right ascension and de

clination in one second of time, assuming that r, T etc. are

likewise expressed in seconds of time. Then we have:

We shall have as many equations as angles of position

have been observed, and if n is the number of observations,

we obtain:

-UK-A 7

H--; -,i*a&8+ &quot;--A9*
- -,

/ da 2 dado do- n

where we can take:

2.22 sin I r 2
. f

2^
- instead of

n n

if we have tables for these quantities.

Likewise we obtain from the observed distances the dis

tance D corresponding to the arithmetical mean of the times:
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d-hd H-d&quot;-K.,

We must now find the expressions for the differential

coefficients. But we have:

D sin P= (a a ) cos

c,

or: tangP= s s;
cos

Z&amp;gt;

2 =
( a )

2 cos d 2
-+-

(0&quot;
8 )

2
,

and we easily find:

dP cos S cos P dP sinP dZ) d/)= -
-^
= ri - = cos o sin P. -r-= cos P

da D do D da do

d-P_ 2 cos ?
2 sin P cos P d 2 P= 2 sin P cosP

d 2
-Z)

2 do 2
-Z)

&quot;

d 2 P 2 cos 0&quot; sin P 2 cos 8

d~a~d~ ~~D*~~ ~~D*~

d-D_cosS- cosP 2 d 2

Z)_sinP
2 d 2

&amp;gt; cos S sin P cos P
do 2

&quot;

D d-~ D&quot;* da.dS~ D
If we put:

A cos S= c sin /

A 0^ == c cos 7,

we obtain :

_ /? -4- p -h^ H- . . . _ sin_(Pri.?0_cos_(Pz:jO 2^2

&quot;n D 2 n

__ ... _ ,
sin(P

D
or denoting by M the modulus of the common logarithms:

^_^_ d
log D = log-

n JLJ u

It is desirable to find the second term of P expressed
in minutes of arc, and the second term of log D in units of

the fifth decimal. Therefore, if R is the equivalent of the

unit of the scale in seconds of arc, and if D is expressed in

units of the scale, and
A&amp;lt;*

and j\d denote the changes of

the right ascension and declination in 24 hours, both expressed
in minutes of arc, we must multiply the second term in the

equation for P by
60 206265

86400 2 R*

and the term in the equation for D by:
100000 . 60 2

86400^TR^
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But if we make use of the tables for 2 sin \ r2
,

so that

we take:

_ -- -+-... _ sin (P -^

and

we must multiply these terms respectively by
60. 206265 2

86400*..15*.
and

__
86400 2 .^Tlo 2

41. It is still to be shown, how the zero of the posi
tion circle and the value in arc corresponding to one unit

of the scale can be determined.

The index of the position circle should be at the zero of

the limb, when the plane of section is perpendicular to the

declination axis. Therefore, when the two semi-lenses have

been separated considerably, turn the frame of the object

glass so that the index of the position circle is at the zero,

and then make one image of an object coincident with the

point of intersection of the wires *). If then also the other

image can be brought to this point merely by turning the

telescope round the declination-axis, the plane of section will

be parallel to the plane in which the telescope is moving,
and hence the collimation-error of the position circle will be

zero. But if this should not be the case, then the object

glass must be turned a little, until both images of an object

pass over the point of intersection of the wires when the

telescope is moved about the declination-axis. Then the read

ing of the position circle in this position is its error of colli-

mation.

But this presupposes, that the slides move on a straight

line. If this is not the case, the error of collimation will

be variable with the distance between the two images.

If the wire -cross is placed so, that an equatoreal star

during its passage through the field moves always on one of the

*) For this purpose it is convenient to have double pantile! wires, so

that the middle of the field is indicated by a small square.
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wires, this must be parallel to the equator. If then the semi-

lenses are separated, and the object-glass is turned about

the axis of the telescope until the two images of an object

move along this wire, then the reading of the position circle

ought to be 90&quot; or 270. But if it is in this position 90 c

or 270&quot; c, then c is the error of collimation, which must

be added to all readings.

The
*

equivalent in arc of one unit of the scale can be

found by measuring the known diameter of an object, for

instance, that of the sun, or the distance between two stars,

whose places are accurately known. For this purpose stars

of the Pleiades may be chosen, as their places have been ob

served by Bessel with the greatest accuracy.

The method proposed by Gauss can be used also for

this purpose. For since the axes of the semi -lenses, even

when they are separated, are parallel, it follows, that if we

direct a telescope, whose eye -piece is adjusted for objects

at an infinite distance, to the object-glass of a heliorneter,

we see distinctly the double image of the wire at its focus.

Therefore if one of the semi -lenses is in that position, in

which the index is exactly at the middle of the scale, while

the other semi-lens is moved so that the index of its scale is

at a considerable distance from the middle, we measure the

distance between the two images of the wire by means of a

theodolite. Comparing then with this angular distance the dif

ference of the readings of the two scales, we can easily find

the equivalent in arc of one unit of the scale. In case that

one of the semi -lenses has no micrometer, the observations

must be made in two different positions of that semi -lens

which is furnished with a graduated screw-head.

Let then S be the reading of the scale of the latter

semi-lens and S the reading of the scale of the other semi-

lens which remains always in the same position, finally s

that of the scale of the eye-piece, then we have, if b and c

are the angles, which straight lines drawn from the points

S and S to the focus make with the axis of the telescope:

(.s-
S ) R= 206265&quot; tang b

(S .s) R= 206265&quot; tang c,

where R is the value in arc of one unit of the scale. Further
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let a be the measured angular distance between the two

images of the wire, then we have

a= b -h c.

If we eliminate b and c by means of the last equation,
we find the following equation of the second degree:

(.
-

S.) (S - .) tang a . 2 +(- S.) = ** ,

from which we obtain:

R _ (S - )
-

tf(S
- Sp)

2
-+- 4 (s -^SQ j QS

206265 2 S ) (S s) tang a

Let then S be the reading . of the scale in the second

position of the semi-lens, s that of the scale of the eye-piece
and a the observed angular distance between the two images,
then we shall obtain a similar equation for R, in which S

,
s

and a take the place of S, s and a. Now we can always

arrange the observations in such a way that:

S S =
S&amp;lt;&amp;gt;

S and s S = S s

and then we find from the difference of the two equations :

_R_ _ (S S) V(S -Sr~ +16 (^-^oX^~

206265 4 (s S ) (S s) tang f (o -h a )

When 5 Sy and S s have the same sign ,
and if

we put:

we find for #:

206265- -

tuga-K(
-

4$,} OS )

= 206265
^- -5

But when 5 8 and S s have opposite signs, and if

we put:

we find for /?:

^= 206265-
sin /S

= 206265- -W (.-&amp;gt;

When = S and s = S
,
we obtain for /? instead of

the equations of the second degree the following:
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f ) 2ol65
= tang &quot;

R

hence :

R = 20G265 -.-^A.y_L.^

for which we can also write:

These formulae can be used also in case, that the dia

meter of the sun or the distance between two fixed stars is

observed. Then a and a will be equal to the diameter of

the sun or to the distance between the two stars.

When the heliometer is furnished with a wire-cross, we
can also place one of the wires parallel to the equator and then,

after the two semi-lenses have been separated and turned so

that the two images of a star move along this wire, ^observe

the transits of the two images over the normal wires.

The value in arc of one revolution of the screw is va

riable with the temperature and hence it must be assumed

to be of the form:

R= a b(t * ).

Hence the value of R must be determined at different

temperatures and the values of a and b be deduced from

all these different determinations.

Note. Compare :

Hansen, Methode mil dem Fraunhoferschen Heliometer Beobachtungen
anzustellen.

and

Bessel, Theorie eines mit einem Heliometer versehenen Aequatoreals.

Astronomische Untersuchungen, Bd. I. Konigsberger Beobachtungen
Bd. 15.

VIII. METHODS OF CORRECTING OBSERVATIONS MADE BY MEANS
OF A MICROMETER FOR REFRACTION.

42. The observations made by means of a micrometer

give the differences of the apparent right ascensions and de

clinations of stars either immediately or so that they can be

35
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computed from the results of observation. If the refraction were

the same for the two stars, the observed difference of the

apparent places would also be equal to the difference of the

true places. But since the refraction varies with the altitude

of the objects, the observations made with a micrometer will

need a correction on this account. Only in case that the

two stars are on the same parallel, there will be no correc

tion, because then the observations are made at the same

point of the micrometer and hence at the same altitude *).

The common tables of refraction, for instance, those pu
blished in the Tabulae Regiomontanae give the refraction for

the normal state of the atmosphere (that is, for a certain

height of the barometer and thermometer) in the form:

n tang z,

where z denotes the apparent zenith distance and a is a fac

tor variable with the zenith distance, which for

.2= 45 is equal to 57&quot;. 682

and decreases when the zenith distance is increasing so that

for 2= 85 it is equal to 51&quot;. 310.

By means of these tables others can be calculated, whose

argument is the true zenith distance and by means of which

the refraction is found by the formula:

s
o= ft tang ,

where /? is again a function of . We have therefore:

tang

hence :

= z z 4- ft

1

tang ft tang g,

or denoting:

(* -*) by AC* -*)

also :

A (z -z} = (? tang
-

ft tang g. (a)

This is the expression for the correction, which must be

applied to the observed difference of the apparent zenith dis

tances in order to find the difference of the true zenith dis

tances.

*) This remark is not true for micrometers with which distances and

angles of position arc measured.
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If we denote by ft that value of /?, which corresponds to :

2
&quot;

and which is derived from the equation:

o =
ft Q tang ,

we have:

(f tang =
/? tang g -+- 1 ^ tang (g

-
g) -}-...

&quot;bo

/? tang g = j3 tang g
-

4 -j- tang g (g
; -

g) 4- . . .

ago

If we write in all terms of the second member, except

the first, tang ^ instead of tang and tang ,
the terms con

taining the second differential coefficients will be the same,

and we have with a considerable degree of accuracy:

ft tang g ft tang g= /9 [tang g tang g]

a&o sec g

Therefore if we put:

rf^o sec ^ n
-

we obtain by means of (a):

A (z
1

2) A: [tang g tang g]

where & must be computed with the value:

2

and since we can take, neglecting the second power of :

tang g tang g== ~=-v
we have :

But this formula assumes that the difference of the true

zenith distances is given. If we introduce instead of it the

difference of the apparent zenith distances, we must multiply

the formula by
c

. and we find:
dz

A (s
1

z) = k -~
., ,

az cos g
&quot;

or if we put now:

35*
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* sec

ir -H^-r^sin 2 Co 206265 , (/I)
t/z ( d

we finally obtain:

_ ^_ _z_

cos C
2

The following example will serve to show how accura

tely the difference of the true zenith distances can be found

from the difference of the apparent zenith distances by means

of this formula:

True zenith distance Apparent zenith distance z Refraction

87 20 87 5 27&quot;. 4 14 32&quot;. 6

30 14 54 . 8 155.2
40 24 20 . 7 39 . 3

50 33 44 .5 16 15 .5

88 43 6 . 4 53 . 6.

From this we obtain the following values of ft:

87 20 40&quot;. 6427

30 39 . 5209

40 38 . 2727

50 36 . 9073,

and from these we find by means of the formulae in No. 15

of the introduction the values of
c ?

,
that is, the variations

of ftQ corresponding to a change of c equal to one second:

87 30 -0&quot;. 0019750

40 .0021767

50 .0023967.

If we compute now the values of A;, we find, since the

logarithms of ~ are :

87 30 0.0271

40 . 0287

50 . 0307,

the following values for the logarithms of k:

Jc

87 30 6.0505

40 6.0155

50 5.9771

where k is expressed in parts of the radius.
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If we take now:

2= S7 10 and z = S750
,

and hence:
- _ 2= 40 ,

we have by means of the common tables of refraction:

= 87 24 47&quot;. 8

=88 7 23 .0,

hence :

= + 42 35&quot;. 2

= S746 5&quot;.4.

If we suppose now that z z and are given, and

compute A (X *) by means of the formulae {A) and (#),

we find, since the value of log k corresponding to is

5.9925:

A (2 2)
= + 2 35&quot;. 4,

hence :

= -h42 35&quot;.4,

which is nearly the same value, which was obtained from

the tables of refraction.

The values of k may be taken from tables whose argu
ment is the zenith distance. Such tables have been publi

shed in the third volume of the Astronomische Nachrichten

in Bessel s paper ^Ueber die Correction wegen der Strahlen-

brechung bei Micrometerbeobachtungen
&quot; and in his work

Astronomische Untersuchungen Bd. I. In the last mentioned

work there are also tables, which give the variations of k

for any change of the height of the thermometer and baro

meter.

For computing the difference of the true zenith distan

ces to itself must be known. But since the right ascensions

and declinations of the two stars are known, we can find

this quantity with sufficient accuracy, if we compute it from

the arithmetical mean of the right ascensions and declina

tions. For this purpose the following formulae are the most

convenient, since it is also necessary, to know the parallactic

angle :

sin sin
ij
= cos cp sin t

sin cos r]
= cos8 sin cp

sin S cos cp cos t a

cos = sin $o sin cp -+- cos S cos
cp

cos t .
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Putting:
cos n= cos

tp
sin t

( ,

sin n sinN= cos tp cos t

sin n cosN= sin
90,

we have:

sin sin 77
= cos n

sin g cos 77
= sin n cos (.AT&quot;-)-

&amp;lt;? n )

cos = sin n sin (JV-f- &amp;lt;? ),

or:

tang sin 77
= cotang n . cosec (N-\- S )

tang cos 77
= cotang (2V-t- $ ).

The quantities cotang n and iV can again be tabulated

for any place, the argument being t. In case that the tables,

mentioned in No. 7 of the first section, have been computed,

they can also be used for finding the zenith distance and

the parallactic angle. The connection between the above

formulae and those used for constructing the tables is easily

discovered.

43. The difference of the true zenith distances having
been found from that of the apparent zenith distances, the

difference of the true right ascensions and declinations of

two stars is also easily derived from the observed apparent
differences of these co-ordinates. For if ft tang is the refrac

tion for the zenith distance f,

$ tang t sin ri .
,

-, ,, ,
. . i ,

p.
- - --- is the refraction in right ascension

and

ft tang cos
i]

the refraction in declination.

But we have:

. sin 77 sin rj sin 77 . sin 77

^y ~
ft tang ^

cos 1= k tang ^
cos y

~ k tang e
oosi

tang sin 17 o

. _cos &amp;lt;

,

(d d) -f- fc .
-

(a a),
_

,

--
.

-

ad,, d

and likewise we find:

/3 tang g cos ,
-

ft tang cos rj
= k .

_
c?a

rf. tang g,, cos 770 ,

-h k . ( a),aa

where (5 and denote the differences of the appa
rent right ascensions and declinations.
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Differentiating the formulae for:

tang sin 17
~ and tang cos rj

cos o

we obtain:

jj _

cos S tang
2 sin TJ cos y tang sin

rj_
tang o&quot;

dS cos o^

. tang sin 77
a

^ = 1 tang cos 17 tang S -+- tang g
2 sin vj

2

-
[tang

2 cos ?7

2
-+- 1]

= tang
2 cos 77 sin 77 cos $ -f- tang sin 77 sin J,

and these expressions being found we can now treat of the

several micrometers, whose theory was given in No. VII of

this section. But since those mentioned in No. 33 are at

present entirely out of use, we will omit the corrections

for them.

44. The micrometer, by which the difference of right ascen

sion is found from the transits over wires perpendicular to

the parallel of the stars, whilst the difference of declination

is found by direct measurement. With these micrometers

refraction has an influence only at the moment when the two

stars pass over the same declination circle, and hence we need

only to consider the difference of refraction, dependent on

the difference of declination.

Therefore the correction of the apparent right ascension

and declination is for the first star:

*9~-fi tang cos 17,

for the second:

tang

and hence we obtain by means of the formulae in No. 43:

ta

A (y - S) =- k .
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or substituting the values of the differential coefficients:

A / ; v __ , /*; *s tang
2
sin

/; cos ?? tang sin/; tang$
cos 8

A (8 &amp;lt;?)

=
( 8) [tang

2 cos
77

2
-f- 1].

These formulae receive a more convenient form if we
introduce the auxiliary quantities cotang n and N. For, sub

stituting the values given in No. 42 for:

tang g sin
ij and tang cos 17

we obtain:

A / ; N__/^ N Ct 20 )

sin (7V-f-$ )
2
cos 8

and

45. The ring micrometer. If the refraction were the same

during the passage of the stars through the field of the ring
micrometer, they would describe chords parallel to the equator
and it would only be necessary, to correct the observed dif

ferences of right ascension and declination for the difference

of refraction at the moment when the stars pass over the
declination circle of the centre of the ring. Therefore we
would have the same corrections as for the filar micro
meter :

A (a
&amp;gt; a)

= k ( 8)
tang

2
sin /o cos 77 tang g sin

77 tang &amp;lt;?

cos&amp;lt;?

and
(a)

A ( 8) = k (S 8) [tang
2 cos y

* + I}.

But since the refraction really changes while the stars

are passing through the field of the ring, it is the same, as

if the stars have a proper motion in right ascension and de
clination. Now if h and h

1

denote the variations of the right
ascension and declination of a star in one second of time,
we must add according to No. 36 of this section the following
correction to the differences of right ascension and decli

nation computed from the observations:

8D_.
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where D is the declination of the centre of the ring and p

is half the chord. Since:

tang sin 77

d .

cos o

dt

and
,

d . tang cos 77

~~~dt

we have:

f TY tan&
2 cos ^ sin?? ~+~ tanS S sin ^tang ^

and likewise for the other star:

^ &amp;gt; / /s n. tang
&quot;2 cos 77 sin r/ 4- tang sin 77 tang &amp;lt;?

=*(*-/&amp;gt;)-
~cos&amp;gt;~

or if we write in both equations 0? 7
A&amp;gt;

an(^ f^o instead of

u, 77, c) and
, ?/, c&amp;gt;

,
that is, if we neglect terms of the order

of k(d D)
2
,
we obtain:

A (a
&amp;gt; _ a) yt (^ _ $)

tan? ?.

2 COS ^ siM &quot;*&quot;
tan^So sin_^o_tan_g

^

If we unite this with the first part of the correction,

which is given by the first of the equations (a), we find:

if i \ in ^ tang g
3

sin 2 77

A ( )
= K (d d) (A)

cos d

Further we have:

If we put rV D = d and denote by h the value of h

for the centre of the field, we have:

d
o

r 2 (^-^ )
7

dd (d-d }

dd&amp;gt;

k ^
~&quot;dd

r~ ^

hence :

7
/^;_ V\ 2

t
1 ~~ tangSo cos r; tang^ 4- tang

A; (5 5) [1 tang cos 77 tang ^ -f- tang
2
sin r;

2
],

and if we unite this with the first part of the correction,

given by the second of the equations (a), we find:
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A ( 8) = k (8 8) [tang
-
cos 2i? -+- tang cos 77 tang &amp;lt;?

]

X [1 -h tang
2
sin 7?

2
tang cos 77 tang &amp;lt;?

]

for the expression of the complete correction of the difference

of declination. Here we can in most cases neglect the terms

multiplied by tang and thus we obtain simply :

A (8
1

S) = k (3 9) tang
2 cos 2^ (Z?)

r 2

- k (S S) _ [tang
3
sin i?

a H- I].

Example. In 1849 Sept. 9 the planet Metis was ob

served at Bilk and compared with a star, whose apparent

place was:
a = 22h I&quot;

1 59 s
. 63

,
$= 21 43 27&quot;. 08.

The observations corresponding to 23 i! 23 &quot; 19 s
. 3 sidereal

time, were:

=+ 1 m 9s. 65 =4- 17 24&quot;. 75

8 D = 5 17&quot;. 5, 8 D = -+- 6 34&quot;. 2

(? 5 = 11 51&quot;. 7 and we have r = 9 26&quot;. 29.

Now if we compute and
/; with

* = lh20M5s=20 11
,

(? = 21 49 . 4 and
&amp;lt;p

= 5l 12 . 5

we obtain:

, cotangn = 9. 34516 N=31l . 9

j?
= 1255 .3 g= 759 . 6.

From the tables for ^ we find for this zenith distance:

log A-= 6. 42 14,

and then the computation of the corrections by means of the

formulae (#) is as follows:

log k= 6 . 4214 - sin 2 ^ 9 . 6394 . 0667

log (8 8)= 2 . 8523,, . 4273 cos (? 9 . 9677

tang
2 = 1 1 1536 cos 2 rj 9 . 9542 A( )

= 1&quot;.25

&quot;6 . 4273,, 1 term of A (8 rV)
= 2&quot;.41

sin
TJ

2 8. 6990

log (tang
2
sin 77

2 H- 1) = . 2335

log/-
2 5.5061

^

5.0133.

D)(S D) 5.0975,,

II term of A (8 8) -h 0&quot;. 82

A ( )
=

1&quot;. 25

A(&amp;lt;? ^) = 3&quot;. 23.
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Hence the corrected differences of right ascension and

declination are:

== + 17 23&quot;. 50
&amp;gt; _ $=ii 54&quot;. 93.

4(5. The micrometer with which angles of position and dis

tances are measured. If a and tf ft denote the dif

ferences of right ascension and declination affected with re

fraction, and a a and d d the same differences freed

from it, we have:
, tang sin rj

a d= a k ( 8}
~~~d~S

tang g sin?y

where the values of the differential coefficients ought to be

computed with the arithmetical means b

9
-

,

r/

^ and -

^

We have therefore:

tangg sinj/

d (a
1-

)
= - k (3 -^

^ tang g sin 77

-f-fc(a
;

a)

and likewise:

- Substituting the values of the differential coefficients found

in No. 43, we get:
_ tang

2 sin rj cos ?? tang g sin ?y tang ^
d (a

-
)
= A: (5

-
5)
-

~^sT~
-I- A; ( ) [tang g

2
sin ?/

2

tang cos ?? tang 5+1]
rf (5 5) = k ( S~) [tang g

2 cos T?

2 + 1]

+ k(a a) [tangt
2
COST; sin?; cos 5+ tang sin r? sin 5].

But, if A and ;r denote the apparent distance and the

apparent angle of position, we have:

cos 8 ( )
= A sin TC

and
8 8= A cos TT,

hence:
cos 5 ( n)

and A = cos 5 ( ) sin ?r + ( 8) cos TT.
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If then A and n denote the true distance and the true

angle of position, we have:

,
cos 71 cos 8d(a ) sin nd(8 8)

TC = 7T -+-
-

A
A = A ~f- sin TT cos Sd (a a) -f- cos n d ( ).

If now we substitute here the values of d(a ) and

rf(&amp;lt;5 t))
which were found before, and introduce in them

A and n instead of a a and &amp;lt;)&quot; d, we obtain:

Jt = it -+- fc tang
-

[sin ?r cos 77 cos n cos ?r -f- sin 77 sin 77 sin 7t cos cnr

cos rj cos ?y cos ?r sin n sin 77 cos 77 sin ?r sin n\

fc tang ^ [cos n cos ?r sin r, tang $ H- sin 7t cos TT cos 77 tang 8

4- sin TT sin n sin 77 tang 8]

-h ^ sin TT cos TT A: sin n cos TT,

or if we neglect the terms multiplied by tangC:
n = 7t k tang

2
sin (TT 77) cos (TT 77).

Further we get:
A = i\ -+- k A tang

2
[sin TT cos TT sin 77 cos 77 -f- sin n -

sin 77 -f- cos n~ cos 77

2

-h sin n cos TT sin 77 cos 77]

A:A tang [cos ?r sin ?r sin 77 tang ^ -f- sin TT sin ?t cos 77 tang 8

sin n cos TT sin 77 tang 8]

-+- A; A [sin 7t
2
-|- cos ?r

2
],

or if we neglect the terms multiplied by tangc:
A = A -f- k A [tang

- cos (n //) -+- 1].

IX. ON THE EFFECT OF PRECESSION, NUTATION AND ABERRATION
UPON THE DISTANCE BETWEEN TWO STARS AND THE ANGLE

OF POSITION.

47. The lunisolar precession and the nutation changes
the position of the declination circle and hence the angles
of position of the stars. From the triangle between the pole
of the ecliptic, that of the equator and the star we easily

find by means of the formulae in No. 1 1 of the first section

and the third of the differential equations (11) in No. 9 of

the introduction the variation of the angle ?/, which the de

clination circle makes with the circle of latitude:

cos 8 drj
= sin e . sin a dk -+- cos a c?c,

as sin a dB is equal to zero, because the lunisolar precession
and the nutation do not change the latitude of the stars.
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The sum of this angle t]
and of the angle of position p of

another star relatively to this star is equal to the angle, which

the circle of latitude makes with the great circle passing

through the two stars, and since this is not changed by pre

cession and nutation, it follows that the change of p is equal

to that of r
t
taken with the opposite sign, and that therefore:

cos 8 dp sin e sin a dk cos a ds. (a)

Since the lunisolar precession does not change the obli

quity of the ecliptic, we find the annual change of the angle

of position by .precession from the equation

s dp dl
cos o - = sin a sin e &amp;gt;

dt dt

or:

dp *
-L = n sm sec o
dt

where n= 20&quot; . 06442 0&quot; . 0000970204 t.

When this formula is employed for computing the change

during a long interval of time, it is necessary to compute

the values of n, and rT for the arithmetical mean of the ti

mes, and to multiply the value of -~ found from them by

the interval of time.

In order to find the changes produced by nutation, we

must substitute in (a) instead of dl and de the expressions

given in No. 5 of the second section. If we neglect the

small terms, we obtain thus the complete change of p by

precession and nutation from the formula:

dp == -I- 20&quot; . 0644 sin sec S -f- [
6&quot; . 8650 sinO H- 0&quot;. 0825 sin 2 1

0&quot;. 5054 sin 2 Q] sin sec S

-
[9&quot;

. 2231 cos O - 0&quot; . 0897 cos 2 O
-f- 0&quot;. 5509 cos 2 Q] uos a sec

&amp;lt;?,

or if we make use of the notation adopted in No. 1 of the

fourth section:

dp= A . n sin a sec S -f- B cos a sec #,

which formula gives the difference of the angle of position

affected with precession and nutation from that referred to

the mean equinox and the mean equator for the beginning

of the year.

In order to find the effect of aberration upon the dis

tance and the angle of position we must remember that ac-
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cording to the expressions in No. 1 of the fourth section

we have:

for the aberration in right ascension: Cc-^-Dd
and for the aberration in declination: Cc -t-Dd ,

where C= 20&quot;. 445 cos s cos 0, D 20&quot;. 445 sin

c= sec 8 cos a, c = tang s cos 8 sin 8 sin

d= sec 8 sin
,

d = sin 8 cos n.

Now if ). and v denote the differences of the right as

censions and the declinations -of the two stars, we find the

changes of these differences by aberration, which are equal
to the difference of the aberration for the two stars, by means
of the equations :

where : A c = sec S sin a . I -+- sec S tang 8 cos . v

Ac/= sec 8 cos a . k -f- sec 8 tang S sin . v

A c = sin S cos a . I [tang s sin 8 -+- cos 8 sin a] v

Ac/ = sin 8 sin a . k -f- cos S cos . v.

Hence, substituting these expressions we have :

cos Al= {?[ sin n . I -+- tang 8 cos a . /
] -h D [cos . k -+- tang &amp;lt;? sin , r]

hv (7 [sin $ cos a . A -f- (tang s sin 8 -f- cos $ sin a) v\

D [sin 8 sin . k cos 8 cos a . v\

But, if we denote the distance and the angle of position

by s and P, we have:

* . sin P= 1 cos 8

* . cos P=
-*&amp;gt;,

hence:
A cos #

s- =/ J cos d- -+- v-, tangP= ,

and therefore :

s . As= cos &amp;lt;?

2 k . A A -h v kv cos &amp;lt;? sin SP (6V H- Z) c/ ).

If we substitute herein the values of A^ and A^ found

before as well as the values of c and d
,
we find after an

easy reduction :

.s- . A s= [I- cos 8- -f- //-
] [

C (tang sin 8 -h cos c? sin a) -\- D cos $ cos a]

or : A* = Cv . s [tang c sin $ -f- cos $ sin a] -}-/). .s cos $ cos .

Further we have:

s
2 dP v cos $ . A^ & cos $ A* ^ sin (^ [Cc -h /&amp;gt;c/ J,

and if we substitute the values of
A&amp;gt;t? A^ c and c?

,
we find

again after a simple reduction:

dP= 6 tang 8 cos a -f- D tang 8 sin a.
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Therefore if we introduce the following notation:

,
n ,. .==- sec o sm
bO

. sec cos
J)==

60

60
== _ ^_

f

tang o&quot; sin a s

rf = d== cos o cos
,

where the factors - - and -
or , have been added in

bO w 206265

order to find the corrections of the distance and of the angle

of position expressed respectively in seconds of arc and mi-

mites of arc, then we have:

Observed distance = True distance -\-cC-\- dD

Observed angle of position
= True angle of position for the beginning of the year

+ a A-+-b B-i-c&amp;gt;

C+&amp;lt;?D.

Since c, rf,
c and d are independent of the angle of

position, it follows, that aberration changes the distances,

whatever be their direction, in the same ratio, and all angles

of positions by the same quantity. Therefore if the circum

ference of a small circle described round a star is occupied

by stars, such a circle will appear enlarged or diminished

by aberration and at the same time turned a little about its

centre; but it always will remain a circle, and the angles

between the radii of the stars will remain the same.
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